Newer
Older
"cells": [
{
"cell_type": "markdown",
"metadata": {

VoyagerXVoyagerXisavailable
committed
"colab_type": "text",
"id": "view-in-github"
"<a href=\"https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/dev-1.x/demo/MMSegmentation_Tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
{
"cell_type": "markdown",
"metadata": {
"id": "FVmnaxFJvsb8"
},
"source": [
"# MMSegmentation Tutorial\n",
"Welcome to MMSegmentation! \n",
"\n",
"In this tutorial, we demo\n",
"* How to do inference with MMSeg trained weight\n",
"* How to train on your own dataset and visualize the results. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QS8YHrEhbpas"
},
"source": [
"## Install MMSegmentation\n",
"This step may take several minutes. \n",
"\n",
"We use PyTorch 1.12 and CUDA 11.3 for this tutorial. You may install other versions by change the version number in pip install command. "

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "UWyLrLYaNEaL",
"outputId": "32a47fe3-f10d-47a1-f6b9-b7c235abdab1"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"# Check nvcc version\n",
"!nvcc -V\n",
"# Check GCC version\n",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "Ki3WUBjKbutg",
"outputId": "14bd14b0-4d8c-4fa9-e3f9-da35c0efc0d5"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"!conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch\n",
"# Install mim\n",
"!pip install -U openmim\n",
"# Install mmengine\n",
"!mim install mmengine\n",
"!mim install 'mmcv >= 2.0.0rc1'\n"

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "nR-hHRvbNJJZ",
"outputId": "10c3b131-d4db-458c-fc10-b94b1c6ed546"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"!git clone -b dev-1.x https://github.com/open-mmlab/mmsegmentation.git \n",
"!pip install -e ."
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "mAE_h7XhPT7d",
"outputId": "83bf0f8e-fc69-40b1-f9fe-0025724a217c"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"# Check Pytorch installation\n",
"import torch, torchvision\n",
"print(torch.__version__, torch.cuda.is_available())\n",
"\n",
"print(mmseg.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Ta51clKX4cwM"
},
"source": [
"## Finetune a semantic segmentation model on a new dataset\n",
"To finetune on a customized dataset, the following steps are necessary. \n",
"1. Add a new dataset class. \n",
"2. Create a config file accordingly. \n",
"3. Perform training and evaluation. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AcZg6x_K5Zs3"
},
"source": [
"### Add a new dataset\n",
"\n",
"Datasets in MMSegmentation require image and semantic segmentation maps to be placed in folders with the same prefix. To support a new dataset, we may need to modify the original file structure. \n",
"In this tutorial, we give an example of converting the dataset. You may refer to [docs](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/tutorials/customize_datasets.md#customize-datasets-by-reorganizing-data) for details about dataset reorganization. \n",
"We use [Stanford Background Dataset](http://dags.stanford.edu/projects/scenedataset.html) as an example. The dataset contains 715 images chosen from existing public datasets [LabelMe](http://labelme.csail.mit.edu), [MSRC](http://research.microsoft.com/en-us/projects/objectclassrecognition), [PASCAL VOC](http://pascallin.ecs.soton.ac.uk/challenges/VOC) and [Geometric Context](http://www.cs.illinois.edu/homes/dhoiem/). Images from these datasets are mainly outdoor scenes, each containing approximately 320-by-240 pixels. \n",
"In this tutorial, we use the region annotations as labels. There are 8 classes in total, i.e. sky, tree, road, grass, water, building, mountain, and foreground object. "
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "TFIt7MHq5Wls",
"outputId": "74a126e4-c8a4-4d2f-a910-b58b71843a23"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"!wget http://dags.stanford.edu/data/iccv09Data.tar.gz -O stanford_background.tar.gz\n",
"!tar xf stanford_background.tar.gz"
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 377

VoyagerXVoyagerXisavailable
committed
"id": "78LIci7F9WWI",
"outputId": "c432ddac-5a50-47b1-daac-5a26b07afea2"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"img = mmcv.imread('iccv09Data/images/6000124.jpg')\n",
"plt.figure(figsize=(8, 6))\n",
"plt.imshow(mmcv.bgr2rgb(img))\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "L5mNQuc2GsVE"
},
"source": [
"We need to convert the annotation into semantic map format as an image."
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"id": "WnGZfribFHCx"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"# define dataset root and directory for images and annotations\n",
"data_root = 'iccv09Data'\n",
"img_dir = 'images'\n",
"ann_dir = 'labels'\n",
"# define class and palette for better visualization\n",
"classes = ('sky', 'tree', 'road', 'grass', 'water', 'bldg', 'mntn', 'fg obj')\n",
"palette = [[128, 128, 128], [129, 127, 38], [120, 69, 125], [53, 125, 34], \n",
" [0, 11, 123], [118, 20, 12], [122, 81, 25], [241, 134, 51]]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "WnGZfribFHCx"
},
"outputs": [],
"source": [
"import os.path as osp\n",
"import numpy as np\n",
"from PIL import Image\n",
"\n",
"# convert dataset annotation to semantic segmentation map\n",
"for file in mmengine.scandir(osp.join(data_root, ann_dir), suffix='.regions.txt'):\n",
" seg_map = np.loadtxt(osp.join(data_root, ann_dir, file)).astype(np.uint8)\n",
" seg_img = Image.fromarray(seg_map).convert('P')\n",
" seg_img.putpalette(np.array(palette, dtype=np.uint8))\n",
" seg_img.save(osp.join(data_root, ann_dir, file.replace('.regions.txt', \n",
" '.png')))"

VoyagerXVoyagerXisavailable
committed
]

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 377

VoyagerXVoyagerXisavailable
committed
"id": "5MCSS9ABfSks",
"outputId": "92b9bafc-589e-48fc-c9e9-476f125d6522"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"source": [
"# Let's take a look at the segmentation map we got\n",
"import matplotlib.patches as mpatches\n",
"img = Image.open('iccv09Data/labels/6000124.png')\n",
"plt.figure(figsize=(8, 6))\n",
"im = plt.imshow(np.array(img.convert('RGB')))\n",
"\n",
"# create a patch (proxy artist) for every color \n",
"patches = [mpatches.Patch(color=np.array(palette[i])/255., \n",
" label=classes[i]) for i in range(8)]\n",
"# put those patched as legend-handles into the legend\n",
"plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., \n",
" fontsize='large')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"id": "WbeLYCp2k5hl"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"source": [
"# split train/val set randomly\n",
"split_dir = 'splits'\n",
"mmengine.mkdir_or_exist(osp.join(data_root, split_dir))\n",
"filename_list = [osp.splitext(filename)[0] for filename in mmengine.scandir(\n",
" osp.join(data_root, ann_dir), suffix='.png')]\n",
"with open(osp.join(data_root, split_dir, 'train.txt'), 'w') as f:\n",
" # select first 4/5 as train set\n",
" train_length = int(len(filename_list)*4/5)\n",
" f.writelines(line + '\\n' for line in filename_list[:train_length])\n",
"with open(osp.join(data_root, split_dir, 'val.txt'), 'w') as f:\n",
" # select last 1/5 as train set\n",
" f.writelines(line + '\\n' for line in filename_list[train_length:])"

VoyagerXVoyagerXisavailable
committed
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HchvmGYB_rrO"
},
"source": [
"After downloading the data, we need to implement `load_annotations` function in the new dataset class `StanfordBackgroundDataset`."
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"id": "LbsWOw62_o-X"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"from mmseg.registry import DATASETS\n",
"from mmseg.datasets import BaseSegDataset\n",
"\n",
"\n",
"@DATASETS.register_module()\n",
"class StanfordBackgroundDataset(BaseSegDataset):\n",
" METAINFO = dict(classes = classes, palette = palette)\n",
" def __init__(self, **kwargs):\n",
" super().__init__(img_suffix='.jpg', seg_map_suffix='.png', **kwargs)\n",

VoyagerXVoyagerXisavailable
committed
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "yUVtmn3Iq3WA"
},
"source": [
"### Create a config file\n",
"In the next step, we need to modify the config for the training. To accelerate the process, we finetune the model from trained weights."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Download config and checkpoint files\n",
"!mim download mmsegmentation --config pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 --dest ."
]
},

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"id": "Wwnj9tRzqX_A"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"from mmengine import Config\n",
"cfg = Config.fromfile('configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py')\n",
"print(f'Config:\\n{cfg.pretty_text}')"

VoyagerXVoyagerXisavailable
committed
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1y2oV5w97jQo"
},
"source": [
"Since the given config is used to train PSPNet on the cityscapes dataset, we need to modify it accordingly for our new dataset. "
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "eyKnYC1Z7iCV",
"outputId": "6195217b-187f-4675-994b-ba90d8bb3078"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"# Since we use only one GPU, BN is used instead of SyncBN\n",
"cfg.norm_cfg = dict(type='BN', requires_grad=True)\n",
"cfg.crop_size = (256, 256)\n",
"cfg.model.data_preprocessor.size = cfg.crop_size\n",
"cfg.model.backbone.norm_cfg = cfg.norm_cfg\n",
"cfg.model.decode_head.norm_cfg = cfg.norm_cfg\n",
"cfg.model.auxiliary_head.norm_cfg = cfg.norm_cfg\n",
"# modify num classes of the model in decode/auxiliary head\n",
"cfg.model.decode_head.num_classes = 8\n",
"cfg.model.auxiliary_head.num_classes = 8\n",
"\n",
"# Modify dataset type and path\n",
"cfg.dataset_type = 'StanfordBackgroundDataset'\n",
"cfg.data_root = data_root\n",
"\n",
"cfg.train_dataloader.batch_size = 8\n",
"\n",
"cfg.train_pipeline = [\n",
" dict(type='LoadImageFromFile'),\n",
" dict(type='LoadAnnotations'),\n",
" dict(type='RandomResize', scale=(320, 240), ratio_range=(0.5, 2.0), keep_ratio=True),\n",
" dict(type='RandomCrop', crop_size=cfg.crop_size, cat_max_ratio=0.75),\n",
" dict(type='RandomFlip', prob=0.5),\n",
" dict(type='PackSegInputs')\n",
"]\n",
"\n",
"cfg.test_pipeline = [\n",
" dict(type='LoadImageFromFile'),\n",
" dict(type='Resize', scale=(320, 240), keep_ratio=True),\n",
" # add loading annotation after ``Resize`` because ground truth\n",
" # does not need to do resize data transform\n",
" dict(type='LoadAnnotations'),\n",
" dict(type='PackSegInputs')\n",
"cfg.train_dataloader.dataset.type = cfg.dataset_type\n",
"cfg.train_dataloader.dataset.data_root = cfg.data_root\n",
"cfg.train_dataloader.dataset.data_prefix = dict(img_path=img_dir, seg_map_path=ann_dir)\n",
"cfg.train_dataloader.dataset.pipeline = cfg.train_pipeline\n",
"cfg.train_dataloader.dataset.ann_file = 'splits/train.txt'\n",
"\n",
"cfg.val_dataloader.dataset.type = cfg.dataset_type\n",
"cfg.val_dataloader.dataset.data_root = cfg.data_root\n",
"cfg.val_dataloader.dataset.data_prefix = dict(img_path=img_dir, seg_map_path=ann_dir)\n",
"cfg.val_dataloader.dataset.pipeline = cfg.test_pipeline\n",
"cfg.val_dataloader.dataset.ann_file = 'splits/val.txt'\n",
"cfg.test_dataloader = cfg.val_dataloader\n",
"# Load the pretrained weights\n",
"cfg.load_from = 'pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'\n",
"\n",
"# Set up working dir to save files and logs.\n",
"cfg.work_dir = './work_dirs/tutorial'\n",
"\n",
"cfg.train_cfg.max_iters = 200\n",
"cfg.train_cfg.val_interval = 200\n",
"cfg.default_hooks.logger.interval = 10\n",
"cfg.default_hooks.checkpoint.interval = 200\n",
"# Set seed to facilitate reproducing the result\n",
"cfg['randomness'] = dict(seed=0)\n",
"\n",
"# Let's have a look at the final config used for training\n",
"print(f'Config:\\n{cfg.pretty_text}')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QWuH14LYF2gQ"
},
"source": [
"### Train and Evaluation"
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "jYKoSfdMF12B",
"outputId": "422219ca-d7a5-4890-f09f-88c959942e64"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"from mmengine.runner import Runner\n",
"from mmseg.utils import register_all_modules\n",
"# register all modules in mmseg into the registries\n",
"# do not init the default scope here because it will be init in the runner\n",
"register_all_modules(init_default_scope=False)\n",
"runner = Runner.from_cfg(cfg)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# start training\n",
"runner.train()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DEkWOP-NMbc_"
},
"source": [
"Inference with trained model"
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 645

VoyagerXVoyagerXisavailable
committed
"id": "ekG__UfaH_OU",
"outputId": "1437419c-869a-4902-df86-d4f6f8b2597a"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"from mmseg.apis import init_model, inference_model, show_result_pyplot\n",
"# Init the model from the config and the checkpoint\n",
"checkpoint_path = './work_dirs/tutorial/iter_200.pth'\n",
"model = init_model(cfg, checkpoint_path, 'cuda:0')\n",
"\n",
"img = mmcv.imread('iccv09Data/images/6000124.jpg')\n",
"result = inference_model(model, img)\n",
"vis_result = show_result_pyplot(model, img, result)\n",
"plt.imshow(mmcv.bgr2rgb(vis_result))\n"

VoyagerXVoyagerXisavailable
committed
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"include_colab_link": true,
"name": "MMSegmentation Tutorial.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3.8.5 ('tensorflow')",

VoyagerXVoyagerXisavailable
committed
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",

VoyagerXVoyagerXisavailable
committed
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": []
}
},
"vscode": {
"interpreter": {
"hash": "20d4b83e0c8b3730b580c42434163d64f4b735d580303a8fade7c849d4d29eba"

VoyagerXVoyagerXisavailable
committed
}
},
"nbformat": 4,
"nbformat_minor": 2