Newer
Older
"cells": [
{
"cell_type": "markdown",
"metadata": {

VoyagerXVoyagerXisavailable
committed
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"<a href=\"https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/master/demo/MMSegmentation_Tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
{
"cell_type": "markdown",
"metadata": {
"id": "FVmnaxFJvsb8"
},
"source": [
"# MMSegmentation Tutorial\n",
"Welcome to MMSegmentation! \n",
"\n",
"In this tutorial, we demo\n",
"* How to do inference with MMSeg trained weight\n",
"* How to train on your own dataset and visualize the results. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QS8YHrEhbpas"
},
"source": [
"## Install MMSegmentation\n",
"This step may take several minutes. \n",
"\n",
"We use PyTorch 1.6 and CUDA 10.1 for this tutorial. You may install other versions by change the version number in pip install command. "

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "UWyLrLYaNEaL",
"outputId": "32a47fe3-f10d-47a1-f6b9-b7c235abdab1"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"# Check nvcc version\n",
"!nvcc -V\n",
"# Check GCC version\n",
"!gcc --version"
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "Ki3WUBjKbutg",
"outputId": "14bd14b0-4d8c-4fa9-e3f9-da35c0efc0d5"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"!conda install pytorch=1.6.0 torchvision cudatoolkit=10.1 -c pytorch\n",
"!pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6/index.html"

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "nR-hHRvbNJJZ",
"outputId": "10c3b131-d4db-458c-fc10-b94b1c6ed546"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"!rm -rf mmsegmentation\n",
"!git clone https://github.com/open-mmlab/mmsegmentation.git \n",
"%cd mmsegmentation\n",
"!pip install -e ."
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "mAE_h7XhPT7d",
"outputId": "83bf0f8e-fc69-40b1-f9fe-0025724a217c"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"# Check Pytorch installation\n",
"import torch, torchvision\n",
"print(torch.__version__, torch.cuda.is_available())\n",
"\n",
"# Check MMSegmentation installation\n",
"import mmseg\n",
"print(mmseg.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eUcuC3dUv32I"
},
"source": [
"## Run Inference with MMSeg trained weight"
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "2hd41IGaiNet",
"outputId": "b7b2aafc-edf2-43e4-ea43-0b5dd0aa4b4a"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],

VoyagerXVoyagerXisavailable
committed
"!wget https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth -P checkpoints"
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"id": "H8Fxg8i-wHJE"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"from mmseg.apis import inference_segmentor, init_segmentor, show_result_pyplot\n",
"from mmseg.core.evaluation import get_palette"

VoyagerXVoyagerXisavailable
committed
]

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"id": "umk8sJ0Xuace"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"config_file = '../configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py'\n",
"checkpoint_file = '../checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'"

VoyagerXVoyagerXisavailable
committed
]

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "nWlQFuTgudxu",
"outputId": "5e45f4f6-5bcf-4d04-bb9c-0428ee84a576"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"model = init_segmentor(config_file, checkpoint_file, device='cuda:0')"
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"id": "izFv6pSRujk9"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"source": [
"# test a single image\n",
"result = inference_segmentor(model, img)"

VoyagerXVoyagerXisavailable
committed
]

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 504

VoyagerXVoyagerXisavailable
committed
"id": "bDcs9udgunQK",
"outputId": "7c55f713-4085-47fd-fa06-720a321d0795"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"show_result_pyplot(model, img, result, get_palette('cityscapes'))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Ta51clKX4cwM"
},
"source": [
"## Train a semantic segmentation model on a new dataset\n",
"\n",
"To train on a customized dataset, the following steps are necessary. \n",
"1. Add a new dataset class. \n",
"2. Create a config file accordingly. \n",
"3. Perform training and evaluation. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AcZg6x_K5Zs3"
},
"source": [
"### Add a new dataset\n",
"\n",
"Datasets in MMSegmentation require image and semantic segmentation maps to be placed in folders with the same prefix. To support a new dataset, we may need to modify the original file structure. \n",
"In this tutorial, we give an example of converting the dataset. You may refer to [docs](https://github.com/open-mmlab/mmsegmentation/docs/en/tutorials/new_dataset.md) for details about dataset reorganization. \n",
"We use [Stanford Background Dataset](http://dags.stanford.edu/projects/scenedataset.html) as an example. The dataset contains 715 images chosen from existing public datasets [LabelMe](http://labelme.csail.mit.edu), [MSRC](http://research.microsoft.com/en-us/projects/objectclassrecognition), [PASCAL VOC](http://pascallin.ecs.soton.ac.uk/challenges/VOC) and [Geometric Context](http://www.cs.illinois.edu/homes/dhoiem/). Images from these datasets are mainly outdoor scenes, each containing approximately 320-by-240 pixels. \n",
"In this tutorial, we use the region annotations as labels. There are 8 classes in total, i.e. sky, tree, road, grass, water, building, mountain, and foreground object. "
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "TFIt7MHq5Wls",
"outputId": "74a126e4-c8a4-4d2f-a910-b58b71843a23"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"!wget http://dags.stanford.edu/data/iccv09Data.tar.gz -O stanford_background.tar.gz\n",
"!tar xf stanford_background.tar.gz"
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 377

VoyagerXVoyagerXisavailable
committed
"id": "78LIci7F9WWI",
"outputId": "c432ddac-5a50-47b1-daac-5a26b07afea2"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"# Let's take a look at the dataset\n",
"import mmcv\n",
"import matplotlib.pyplot as plt\n",
"\n",
"img = mmcv.imread('iccv09Data/images/6000124.jpg')\n",
"plt.figure(figsize=(8, 6))\n",
"plt.imshow(mmcv.bgr2rgb(img))\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "L5mNQuc2GsVE"
},
"source": [
"We need to convert the annotation into semantic map format as an image."
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"id": "WnGZfribFHCx"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"source": [
"import os.path as osp\n",
"import numpy as np\n",
"from PIL import Image\n",
"# convert dataset annotation to semantic segmentation map\n",
"data_root = 'iccv09Data'\n",
"img_dir = 'images'\n",
"ann_dir = 'labels'\n",
"# define class and plaette for better visualization\n",
"classes = ('sky', 'tree', 'road', 'grass', 'water', 'bldg', 'mntn', 'fg obj')\n",
"palette = [[128, 128, 128], [129, 127, 38], [120, 69, 125], [53, 125, 34], \n",
" [0, 11, 123], [118, 20, 12], [122, 81, 25], [241, 134, 51]]\n",
"for file in mmcv.scandir(osp.join(data_root, ann_dir), suffix='.regions.txt'):\n",
" seg_map = np.loadtxt(osp.join(data_root, ann_dir, file)).astype(np.uint8)\n",
" seg_img = Image.fromarray(seg_map).convert('P')\n",
" seg_img.putpalette(np.array(palette, dtype=np.uint8))\n",
" seg_img.save(osp.join(data_root, ann_dir, file.replace('.regions.txt', \n",
" '.png')))"

VoyagerXVoyagerXisavailable
committed
]

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 377

VoyagerXVoyagerXisavailable
committed
"id": "5MCSS9ABfSks",
"outputId": "92b9bafc-589e-48fc-c9e9-476f125d6522"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"source": [
"# Let's take a look at the segmentation map we got\n",
"import matplotlib.patches as mpatches\n",
"img = Image.open('iccv09Data/labels/6000124.png')\n",
"plt.figure(figsize=(8, 6))\n",
"im = plt.imshow(np.array(img.convert('RGB')))\n",
"\n",
"# create a patch (proxy artist) for every color \n",
"patches = [mpatches.Patch(color=np.array(palette[i])/255., \n",
" label=classes[i]) for i in range(8)]\n",
"# put those patched as legend-handles into the legend\n",
"plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., \n",
" fontsize='large')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"id": "WbeLYCp2k5hl"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"source": [
"# split train/val set randomly\n",
"split_dir = 'splits'\n",
"mmcv.mkdir_or_exist(osp.join(data_root, split_dir))\n",
"filename_list = [osp.splitext(filename)[0] for filename in mmcv.scandir(\n",
" osp.join(data_root, ann_dir), suffix='.png')]\n",
"with open(osp.join(data_root, split_dir, 'train.txt'), 'w') as f:\n",
" # select first 4/5 as train set\n",
" train_length = int(len(filename_list)*4/5)\n",
" f.writelines(line + '\\n' for line in filename_list[:train_length])\n",
"with open(osp.join(data_root, split_dir, 'val.txt'), 'w') as f:\n",
" # select last 1/5 as train set\n",
" f.writelines(line + '\\n' for line in filename_list[train_length:])"

VoyagerXVoyagerXisavailable
committed
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HchvmGYB_rrO"
},
"source": [
"After downloading the data, we need to implement `load_annotations` function in the new dataset class `StanfordBackgroundDataset`."
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"id": "LbsWOw62_o-X"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"source": [
"from mmseg.datasets.builder import DATASETS\n",
"from mmseg.datasets.custom import CustomDataset\n",
"\n",
"@DATASETS.register_module()\n",
"class StanfordBackgroundDataset(CustomDataset):\n",
" CLASSES = classes\n",
" PALETTE = palette\n",
" def __init__(self, split, **kwargs):\n",
" super().__init__(img_suffix='.jpg', seg_map_suffix='.png', \n",
" split=split, **kwargs)\n",
" assert osp.exists(self.img_dir) and self.split is not None\n",
"\n",
" "

VoyagerXVoyagerXisavailable
committed
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "yUVtmn3Iq3WA"
},
"source": [
"### Create a config file\n",
"In the next step, we need to modify the config for the training. To accelerate the process, we finetune the model from trained weights."
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"id": "Wwnj9tRzqX_A"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"source": [
"from mmcv import Config\n",
"cfg = Config.fromfile('../configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py')"

VoyagerXVoyagerXisavailable
committed
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1y2oV5w97jQo"
},
"source": [
"Since the given config is used to train PSPNet on the cityscapes dataset, we need to modify it accordingly for our new dataset. "
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "eyKnYC1Z7iCV",
"outputId": "6195217b-187f-4675-994b-ba90d8bb3078"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"source": [
"from mmseg.apis import set_random_seed\n",
"\n",
"# Since we use only one GPU, BN is used instead of SyncBN\n",
"cfg.norm_cfg = dict(type='BN', requires_grad=True)\n",
"cfg.model.backbone.norm_cfg = cfg.norm_cfg\n",
"cfg.model.decode_head.norm_cfg = cfg.norm_cfg\n",
"cfg.model.auxiliary_head.norm_cfg = cfg.norm_cfg\n",
"# modify num classes of the model in decode/auxiliary head\n",
"cfg.model.decode_head.num_classes = 8\n",
"cfg.model.auxiliary_head.num_classes = 8\n",
"\n",
"# Modify dataset type and path\n",
"cfg.dataset_type = 'StanfordBackgroundDataset'\n",
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
"cfg.data_root = data_root\n",
"\n",
"cfg.data.samples_per_gpu = 8\n",
"cfg.data.workers_per_gpu=8\n",
"\n",
"cfg.img_norm_cfg = dict(\n",
" mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\n",
"cfg.crop_size = (256, 256)\n",
"cfg.train_pipeline = [\n",
" dict(type='LoadImageFromFile'),\n",
" dict(type='LoadAnnotations'),\n",
" dict(type='Resize', img_scale=(320, 240), ratio_range=(0.5, 2.0)),\n",
" dict(type='RandomCrop', crop_size=cfg.crop_size, cat_max_ratio=0.75),\n",
" dict(type='RandomFlip', flip_ratio=0.5),\n",
" dict(type='PhotoMetricDistortion'),\n",
" dict(type='Normalize', **cfg.img_norm_cfg),\n",
" dict(type='Pad', size=cfg.crop_size, pad_val=0, seg_pad_val=255),\n",
" dict(type='DefaultFormatBundle'),\n",
" dict(type='Collect', keys=['img', 'gt_semantic_seg']),\n",
"]\n",
"\n",
"cfg.test_pipeline = [\n",
" dict(type='LoadImageFromFile'),\n",
" dict(\n",
" type='MultiScaleFlipAug',\n",
" img_scale=(320, 240),\n",
" # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],\n",
" flip=False,\n",
" transforms=[\n",
" dict(type='Resize', keep_ratio=True),\n",
" dict(type='RandomFlip'),\n",
" dict(type='Normalize', **cfg.img_norm_cfg),\n",
" dict(type='ImageToTensor', keys=['img']),\n",
" dict(type='Collect', keys=['img']),\n",
" ])\n",
"]\n",
"\n",
"\n",
"cfg.data.train.type = cfg.dataset_type\n",
"cfg.data.train.data_root = cfg.data_root\n",
"cfg.data.train.img_dir = img_dir\n",
"cfg.data.train.ann_dir = ann_dir\n",
"cfg.data.train.pipeline = cfg.train_pipeline\n",
"cfg.data.train.split = 'splits/train.txt'\n",
"\n",
"cfg.data.val.type = cfg.dataset_type\n",
"cfg.data.val.data_root = cfg.data_root\n",
"cfg.data.val.img_dir = img_dir\n",
"cfg.data.val.ann_dir = ann_dir\n",
"cfg.data.val.pipeline = cfg.test_pipeline\n",
"cfg.data.val.split = 'splits/val.txt'\n",
"\n",
"cfg.data.test.type = cfg.dataset_type\n",
"cfg.data.test.data_root = cfg.data_root\n",
"cfg.data.test.img_dir = img_dir\n",
"cfg.data.test.ann_dir = ann_dir\n",
"cfg.data.test.pipeline = cfg.test_pipeline\n",
"cfg.data.test.split = 'splits/val.txt'\n",
"\n",
"# We can still use the pre-trained Mask RCNN model though we do not need to\n",
"# use the mask branch\n",
"cfg.load_from = 'checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'\n",
"\n",
"# Set up working dir to save files and logs.\n",
"cfg.work_dir = './work_dirs/tutorial'\n",
"\n",
"cfg.runner.max_iters = 200\n",
"cfg.log_config.interval = 10\n",
"cfg.evaluation.interval = 200\n",
"cfg.checkpoint_config.interval = 200\n",
"\n",
"# Set seed to facitate reproducing the result\n",
"cfg.seed = 0\n",
"set_random_seed(0, deterministic=False)\n",
"cfg.gpu_ids = range(1)\n",
"\n",
"# Let's have a look at the final config used for training\n",
"print(f'Config:\\n{cfg.pretty_text}')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QWuH14LYF2gQ"
},
"source": [
"### Train and Evaluation"
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"

VoyagerXVoyagerXisavailable
committed
"id": "jYKoSfdMF12B",
"outputId": "422219ca-d7a5-4890-f09f-88c959942e64"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
"source": [
"from mmseg.datasets import build_dataset\n",
"from mmseg.models import build_segmentor\n",
"from mmseg.apis import train_segmentor\n",
"\n",
"\n",
"# Build the dataset\n",
"datasets = [build_dataset(cfg.data.train)]\n",
"\n",
"# Build the detector\n",
"model = build_segmentor(\n",
" cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg'))\n",
"# Add an attribute for visualization convenience\n",
"model.CLASSES = datasets[0].CLASSES\n",
"\n",
"# Create work_dir\n",
"mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))\n",
"train_segmentor(model, datasets, cfg, distributed=False, validate=True, \n",
" meta=dict())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DEkWOP-NMbc_"
},
"source": [
"Inference with trained model"
]
},
{
"cell_type": "code",

VoyagerXVoyagerXisavailable
committed
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 645

VoyagerXVoyagerXisavailable
committed
"id": "ekG__UfaH_OU",
"outputId": "1437419c-869a-4902-df86-d4f6f8b2597a"
},

VoyagerXVoyagerXisavailable
committed
"outputs": [],
"source": [
"img = mmcv.imread('iccv09Data/images/6000124.jpg')\n",
"\n",
"model.cfg = cfg\n",
"result = inference_segmentor(model, img)\n",
"plt.figure(figsize=(8, 6))\n",
"show_result_pyplot(model, img, result, palette)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []

VoyagerXVoyagerXisavailable
committed
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"include_colab_link": true,
"name": "MMSegmentation Tutorial.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",

VoyagerXVoyagerXisavailable
committed
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
},

VoyagerXVoyagerXisavailable
committed
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": []
}
}
},
"nbformat": 4,
"nbformat_minor": 2