Skip to content
Snippets Groups Projects
train.py 3.84 KiB
Newer Older
# Copyright (c) OpenMMLab. All rights reserved.
Jiarui XU's avatar
Jiarui XU committed
import argparse
xiexinch's avatar
xiexinch committed
import logging
Jiarui XU's avatar
Jiarui XU committed
import os
import os.path as osp

from mmengine.config import Config, DictAction
xiexinch's avatar
xiexinch committed
from mmengine.logging import print_log
from mmengine.registry import RUNNERS
from mmengine.runner import Runner
Jiarui XU's avatar
Jiarui XU committed

from mmseg.utils import register_all_modules
Jiarui XU's avatar
Jiarui XU committed


def parse_args():
    parser = argparse.ArgumentParser(description='Train a segmentor')
    parser.add_argument('config', help='train config file path')
    parser.add_argument('--work-dir', help='the dir to save logs and models')
    parser.add_argument(
        '--resume',
        nargs='?',
        type=str,
        const='auto',
        help='If specify checkpint path, resume from it, while if not '
        'specify, try to auto resume from the latest checkpoint '
        'in the work directory.')
xiexinch's avatar
xiexinch committed
    parser.add_argument(
        '--amp',
        action='store_true',
        default=False,
        help='enable automatic-mixed-precision training')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
Jiarui XU's avatar
Jiarui XU committed
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)

    return args


def main():
    args = parse_args()

    # register all modules in mmseg into the registries
    # do not init the default scope here because it will be init in the runner
    register_all_modules(init_default_scope=False)

    # load config
Jiarui XU's avatar
Jiarui XU committed
    cfg = Config.fromfile(args.config)
    cfg.launcher = args.launcher
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
Jiarui XU's avatar
Jiarui XU committed
    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
xiexinch's avatar
xiexinch committed
    # enable automatic-mixed-precision training
    if args.amp is True:
        optim_wrapper = cfg.optim_wrapper.type
        if optim_wrapper == 'AmpOptimWrapper':
            print_log(
                'AMP training is already enabled in your config.',
                logger='current',
                level=logging.WARNING)
        else:
            assert optim_wrapper == 'OptimWrapper', (
                '`--amp` is only supported when the optimizer wrapper type is '
                f'`OptimWrapper` but got {optim_wrapper}.')
            cfg.optim_wrapper.type = 'AmpOptimWrapper'
            cfg.optim_wrapper.loss_scale = 'dynamic'

    # resume training
    if args.resume == 'auto':
        cfg.resume = True
        cfg.load_from = None
    elif args.resume is not None:
        cfg.resume = True
        cfg.load_from = args.resume

    # build the runner from config
    if 'runner_type' not in cfg:
        # build the default runner
        runner = Runner.from_cfg(cfg)
    else:
        # build customized runner from the registry
        # if 'runner_type' is set in the cfg
        runner = RUNNERS.build(cfg)
Jiarui XU's avatar
Jiarui XU committed

    # start training
    runner.train()
Jiarui XU's avatar
Jiarui XU committed


if __name__ == '__main__':
    main()