Skip to content
Snippets Groups Projects
train.py 6.27 KiB
Newer Older
# Copyright (c) OpenMMLab. All rights reserved.
Jiarui XU's avatar
Jiarui XU committed
import argparse
import copy
import os
import os.path as osp
import time
Jiarui XU's avatar
Jiarui XU committed

import mmcv
import torch
from mmcv.cnn.utils import revert_sync_batchnorm
from mmcv.runner import get_dist_info, init_dist
from mmcv.utils import Config, DictAction, get_git_hash
Jiarui XU's avatar
Jiarui XU committed

from mmseg import __version__
from mmseg.apis import init_random_seed, set_random_seed, train_segmentor
Jiarui XU's avatar
Jiarui XU committed
from mmseg.datasets import build_dataset
from mmseg.models import build_segmentor
from mmseg.utils import collect_env, get_root_logger


def parse_args():
    parser = argparse.ArgumentParser(description='Train a segmentor')
    parser.add_argument('config', help='train config file path')
    parser.add_argument('--work-dir', help='the dir to save logs and models')
    parser.add_argument(
        '--load-from', help='the checkpoint file to load weights from')
Jiarui XU's avatar
Jiarui XU committed
    parser.add_argument(
        '--resume-from', help='the checkpoint file to resume from')
    parser.add_argument(
        '--no-validate',
        action='store_true',
        help='whether not to evaluate the checkpoint during training')
    group_gpus = parser.add_mutually_exclusive_group()
    group_gpus.add_argument(
        '--gpus',
        type=int,
        help='number of gpus to use '
        '(only applicable to non-distributed training)')
    group_gpus.add_argument(
        '--gpu-ids',
        type=int,
        nargs='+',
        help='ids of gpus to use '
        '(only applicable to non-distributed training)')
    parser.add_argument('--seed', type=int, default=None, help='random seed')
    parser.add_argument(
        '--deterministic',
        action='store_true',
        help='whether to set deterministic options for CUDNN backend.')
    parser.add_argument(
        '--options', nargs='+', action=DictAction, help='custom options')
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)

    return args


def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
    if args.options is not None:
        cfg.merge_from_dict(args.options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
    if args.load_from is not None:
        cfg.load_from = args.load_from
Jiarui XU's avatar
Jiarui XU committed
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids
    else:
        cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)
        # gpu_ids is used to calculate iter when resuming checkpoint
        _, world_size = get_dist_info()
        cfg.gpu_ids = range(world_size)
Jiarui XU's avatar
Jiarui XU committed

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # dump config
    cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config:\n{cfg.pretty_text}')

    # set random seeds
    seed = init_random_seed(args.seed)
    logger.info(f'Set random seed to {seed}, '
                f'deterministic: {args.deterministic}')
    set_random_seed(seed, deterministic=args.deterministic)
    cfg.seed = seed
    meta['seed'] = seed
Jiarui XU's avatar
Jiarui XU committed
    meta['exp_name'] = osp.basename(args.config)

    model = build_segmentor(
        cfg.model,
        train_cfg=cfg.get('train_cfg'),
        test_cfg=cfg.get('test_cfg'))
Jiarui XU's avatar
Jiarui XU committed

    # SyncBN is not support for DP
    if not distributed:
        warnings.warn(
            'SyncBN is only supported with DDP. To be compatible with DP, '
            'we convert SyncBN to BN. Please use dist_train.sh which can '
            'avoid this error.')
        model = revert_sync_batchnorm(model)

Jiarui XU's avatar
Jiarui XU committed
    logger.info(model)

    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
        val_dataset.pipeline = cfg.data.train.pipeline
        datasets.append(build_dataset(val_dataset))
    if cfg.checkpoint_config is not None:
        # save mmseg version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
            mmseg_version=f'{__version__}+{get_git_hash()[:7]}',
Jiarui XU's avatar
Jiarui XU committed
            config=cfg.pretty_text,
            CLASSES=datasets[0].CLASSES,
            PALETTE=datasets[0].PALETTE)
    # add an attribute for visualization convenience
    model.CLASSES = datasets[0].CLASSES
    # passing checkpoint meta for saving best checkpoint
    meta.update(cfg.checkpoint_config.meta)
Jiarui XU's avatar
Jiarui XU committed
    train_segmentor(
        model,
        datasets,
        cfg,
        distributed=distributed,
        validate=(not args.no_validate),
        timestamp=timestamp,
        meta=meta)


if __name__ == '__main__':
    main()