Skip to content
Snippets Groups Projects
Commit e13076ad authored by VVsssssk's avatar VVsssssk Committed by GitHub
Browse files

[Fix] fix_torchserver1.1 (#844)

* test_torchserver1.1

* test_torchserver1.2

* update

* update mmseg_handler.py

* update docs

* update torchserver

* tranfer torchserver to torchserve

* update docs
parent 749abaa7
No related branches found
No related tags found
No related merge requests found
......@@ -304,7 +304,7 @@ In order to serve an `MMSegmentation` model with [`TorchServe`](https://pytorch.
### 1. Convert model from MMSegmentation to TorchServe
```shell
python tools/mmseg2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
python tools/torchserve/mmseg2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
--output-folder ${MODEL_STORE} \
--model-name ${MODEL_NAME}
```
......@@ -359,3 +359,20 @@ plt.show()
You should see something similar to:
![3dogs_mask](../resources/3dogs_mask.png)
And you can use `test_torchserve.py` to compare result of torchserve and pytorch, and visualize them.
```shell
python tools/torchserve/test_torchserve.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} ${MODEL_NAME}
[--inference-addr ${INFERENCE_ADDR}] [--result-image ${RESULT_IMAGE}] [--device ${DEVICE}]
```
Example:
```shell
python tools/torchserve/test_torchserve.py \
demo/demo.png \
configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py \
checkpoint/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth \
fcn
```
......@@ -8,6 +8,6 @@ line_length = 79
multi_line_output = 0
known_standard_library = setuptools
known_first_party = mmseg
known_third_party = PIL,cityscapesscripts,cv2,detail,matplotlib,mmcv,numpy,onnxruntime,packaging,prettytable,pytest,pytorch_sphinx_theme,scipy,seaborn,torch,ts
known_third_party = PIL,cityscapesscripts,cv2,detail,matplotlib,mmcv,numpy,onnxruntime,packaging,prettytable,pytest,pytorch_sphinx_theme,requests,scipy,seaborn,torch,ts
no_lines_before = STDLIB,LOCALFOLDER
default_section = THIRDPARTY
File moved
# Copyright (c) OpenMMLab. All rights reserved.
import base64
import io
import os
import cv2
import mmcv
import torch
from mmcv.cnn.utils.sync_bn import revert_sync_batchnorm
from ts.torch_handler.base_handler import BaseHandler
from mmseg.apis import inference_segmentor, init_segmentor
......@@ -27,6 +27,7 @@ class MMsegHandler(BaseHandler):
self.config_file = os.path.join(model_dir, 'config.py')
self.model = init_segmentor(self.config_file, checkpoint, self.device)
self.model = revert_sync_batchnorm(self.model)
self.initialized = True
def preprocess(self, data):
......@@ -47,8 +48,10 @@ class MMsegHandler(BaseHandler):
def postprocess(self, data):
output = []
for image_result in data:
buffer = io.BytesIO()
_, buffer = cv2.imencode('.png', image_result[0].astype('uint8'))
output.append(buffer.tobytes())
bast64_data = base64.b64encode(buffer.tobytes())
bast64_str = str(bast64_data, 'utf-8')
output.append(bast64_str)
return output
import base64
from argparse import ArgumentParser
from io import BytesIO
import matplotlib.pyplot as plt
import mmcv
import requests
from mmseg.apis import inference_segmentor, init_segmentor
def parse_args():
parser = ArgumentParser(
description='Compare result of torchserve and pytorch,'
'and visualize them.')
parser.add_argument('img', help='Image file')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument('model_name', help='The model name in the server')
parser.add_argument(
'--inference-addr',
default='127.0.0.1:8080',
help='Address and port of the inference server')
parser.add_argument(
'--result-image',
type=str,
default=None,
help='save server output in result-image')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
args = parser.parse_args()
return args
def main(args):
url = 'http://' + args.inference_addr + '/predictions/' + args.model_name
with open(args.img, 'rb') as image:
tmp_res = requests.post(url, image)
base64_str = tmp_res.content
buffer = base64.b64decode(base64_str)
if args.result_image:
with open(args.result_image, 'wb') as out_image:
out_image.write(buffer)
plt.imshow(mmcv.imread(args.result_image, 'grayscale'))
plt.show()
else:
plt.imshow(plt.imread(BytesIO(buffer)))
plt.show()
model = init_segmentor(args.config, args.checkpoint, args.device)
image = mmcv.imread(args.img)
result = inference_segmentor(model, image)
plt.imshow(result[0])
plt.show()
if __name__ == '__main__':
args = parse_args()
main(args)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment