Skip to content
Snippets Groups Projects
Unverified Commit 124ec820 authored by Miao Zheng's avatar Miao Zheng Committed by GitHub
Browse files

Merge pull request #2088 from MengzhangLI/transforms_doc

[Doc] Update transforms Doc
parents 0c87f7a0 5b5968d2
No related branches found
No related tags found
No related merge requests found
# Data Transforms
In this tutorial, we introduce the design of transforms pipeline in MMSegmentation.
The structure of this guide is as follows:
- [Data Transforms](#data-transforms)
- [Design of Data pipelines](#design-of-data-pipelines)
- [Customization data transformation](#customization-data-transformation)
## Design of Data pipelines
Following typical conventions, we use `Dataset` and `DataLoader` for data loading
......@@ -10,13 +18,31 @@ we introduce a new `DataContainer` type in MMCV to help collect and distribute
data of different size.
See [here](https://github.com/open-mmlab/mmcv/blob/master/mmcv/parallel/data_container.py) for more details.
The data preparation pipeline and the dataset is decomposed. Usually a dataset
In 1.x version of MMSegmentation, all data transformations are inherited from [`BaseTransform`](https://github.com/open-mmlab/mmcv/blob/2.x/mmcv/transforms/base.py#L6).
The input and output types of transformations are both dict. A simple example is as follows:
```python
>>> from mmseg.datasets.transforms import LoadAnnotations
>>> transforms = LoadAnnotations()
>>> img_path = './data/cityscapes/leftImg8bit/train/aachen/aachen_000000_000019_leftImg8bit.png.png'
>>> gt_path = './data/cityscapes/gtFine/train/aachen/aachen_000015_000019_gtFine_instanceTrainIds.png'
>>> results = dict(
>>> img_path=img_path,
>>> seg_map_path=gt_path,
>>> reduce_zero_label=False,
>>> seg_fields=[])
>>> data_dict = transforms(results)
>>> print(data_dict.keys())
dict_keys(['img_path', 'seg_map_path', 'reduce_zero_label', 'seg_fields', 'gt_seg_map'])
```
The data preparation pipeline and the dataset are decomposed. Usually a dataset
defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict.
A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.
A pipeline consists of a sequence of operations. Each operation takes a dict as input and also outputs a dict for the next transform.
The operations are categorized into data loading, pre-processing, formatting and test-time augmentation.
Here is an pipeline example for PSPNet.
Here is a pipeline example for PSPNet.
```python
crop_size = (512, 1024)
......@@ -37,53 +63,110 @@ test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(2048, 1024), keep_ratio=True),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
# does not need to resize data transform
dict(type='LoadAnnotations'),
dict(type='PackSegInputs')
]
```
For each operation, we list the related dict fields that are added/updated/removed.
Before pipelines, the information we can directly obtain from the datasets are img_path, seg_map_path.
For each operation, we list the related dict fields that are `added`/`updated`/`removed`.
Before pipelines, the information we can directly obtain from the datasets are `img_path` and `seg_map_path`.
### Data loading
`LoadImageFromFile`
`LoadImageFromFile`: Load an image from file.
- add: img, img_shape, ori_shape
- add: `img`, `img_shape`, `ori_shape`
`LoadAnnotations`
`LoadAnnotations`: Load semantic segmentation maps provided by dataset.
- add: seg_fields, gt_seg_map
- add: `seg_fields`, `gt_seg_map`
### Pre-processing
`RandomResize`
`RandomResize`: Random resize image & segmentation map.
- add: scale, scale_factor, keep_ratio
- update: img, img_shape, gt_seg_map
- add: `scale`, `scale_factor`, `keep_ratio`
- update: `img`, `img_shape`, `gt_seg_map`
`Resize`
`Resize`: Resize image & segmentation map.
- add: scale, scale_factor, keep_ratio
- update: img, gt_seg_map, img_shape
- add: `scale`, `scale_factor`, `keep_ratio`
- update: `img`, `gt_seg_map`, `img_shape`
`RandomCrop`
`RandomCrop`: Random crop image & segmentation map.
- update: img, pad_shape, gt_seg_map
- update: `img`, `gt_seg_map`, `img_shape`.
`RandomFlip`
`RandomFlip`: Flip the image & segmentation map.
- add: flip, flip_direction
- update: img, gt_seg_map
- add: `flip`, `flip_direction`
- update: `img`, `gt_seg_map`
`PhotoMetricDistortion`
`PhotoMetricDistortion`: Apply photometric distortion to image sequentially,
every transformation is applied with a probability of 0.5.
The position of random contrast is in second or second to last(mode 0 or 1 below, respectively).
- update: img
```
1. random brightness
2. random contrast (mode 0)
3. convert color from BGR to HSV
4. random saturation
5. random hue
6. convert color from HSV to BGR
7. random contrast (mode 1)
```
- update: `img`
### Formatting
`PackSegInputs`
`PackSegInputs`: Pack the inputs data for the semantic segmentation.
- add: inputs, data_sample
- add: `inputs`, `data_sample`
- remove: keys specified by `meta_keys` (merged into the metainfo of data_sample), all other keys
## Customization data transformation
The customized data transformation must inherited from `BaseTransform` and implement `transform` function.
Here we use a simple flipping transformation as example:
```python
import random
import mmcv
from mmcv.transforms import BaseTransform, TRANSFORMS
@TRANSFORMS.register_module()
class MyFlip(BaseTransform):
def __init__(self, direction: str):
super().__init__()
self.direction = direction
def transform(self, results: dict) -> dict:
img = results['img']
results['img'] = mmcv.imflip(img, direction=self.direction)
return results
```
Thus, we can instantiate a `MyFlip` object and use it to process the data dict.
```python
import numpy as np
transform = MyFlip(direction='horizontal')
data_dict = {'img': np.random.rand(224, 224, 3)}
data_dict = transform(data_dict)
processed_img = data_dict['img']
```
Or, we can use `MyFlip` transformation in data pipeline in our config file.
```python
pipeline = [
...
dict(type='MyFlip', direction='horizontal'),
...
]
```
Note that if you want to use `MyFlip` in config, you must ensure the file containing `MyFlip` is imported during runtime.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment