-
MengzhangLI authored
* merge docs/ and docs_zh-CN/ * merge docs/ and docs_zh-CN/ * merge docs/ and docs_zh-CN/ * merge docs/ and docs_zh-CN/ * fix launch utility url * fix launch utility url * fix wrong pytorch doc url * remove wrong links docs//
MengzhangLI authored* merge docs/ and docs_zh-CN/ * merge docs/ and docs_zh-CN/ * merge docs/ and docs_zh-CN/ * merge docs/ and docs_zh-CN/ * fix launch utility url * fix launch utility url * fix wrong pytorch doc url * remove wrong links docs//
Benchmark and Model Zoo
Common settings
-
We use distributed training with 4 GPUs by default.
-
All pytorch-style pretrained backbones on ImageNet are train by ourselves, with the same procedure in the paper. Our ResNet style backbone are based on ResNetV1c variant, where the 7x7 conv in the input stem is replaced with three 3x3 convs.
-
For the consistency across different hardwares, we report the GPU memory as the maximum value of
torch.cuda.max_memory_allocated()
for all 4 GPUs withtorch.backends.cudnn.benchmark=False
. Note that this value is usually less than whatnvidia-smi
shows. -
We report the inference time as the total time of network forwarding and post-processing, excluding the data loading time. Results are obtained with the script
tools/benchmark.py
which computes the average time on 200 images withtorch.backends.cudnn.benchmark=False
. -
There are two inference modes in this framework.
-
slide
mode: Thetest_cfg
will be likedict(mode='slide', crop_size=(769, 769), stride=(513, 513))
.In this mode, multiple patches will be cropped from input image, passed into network individually. The crop size and stride between patches are specified by
crop_size
andstride
. The overlapping area will be merged by average -
whole
mode: Thetest_cfg
will be likedict(mode='whole')
.In this mode, the whole imaged will be passed into network directly.
By default, we use
slide
inference for 769x769 trained model,whole
inference for the rest.
-
-
For input size of 8x+1 (e.g. 769),
align_corner=True
is adopted as a traditional practice. Otherwise, for input size of 8x (e.g. 512, 1024),align_corner=False
is adopted.
Baselines
FCN
Please refer to FCN for details.
PSPNet
Please refer to PSPNet for details.
DeepLabV3
Please refer to DeepLabV3 for details.
PSANet
Please refer to PSANet for details.
DeepLabV3+
Please refer to DeepLabV3+ for details.
UPerNet
Please refer to UPerNet for details.
NonLocal Net
Please refer to NonLocal Net for details.
EncNet
Please refer to EncNet for details.