Newer
Older
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
### V0.19 (11/02/2021)
**Highlights**
- Support TIMMBackbone wrapper ([#998](https://github.com/open-mmlab/mmsegmentation/pull/998))
- Support custom hook ([#428](https://github.com/open-mmlab/mmsegmentation/pull/428))
- Add codespell pre-commit hook ([#920](https://github.com/open-mmlab/mmsegmentation/pull/920))
- Add FastFCN benchmark on ADE20K ([#972](https://github.com/open-mmlab/mmsegmentation/pull/972))
**New Features**
- Support TIMMBackbone wrapper ([#998](https://github.com/open-mmlab/mmsegmentation/pull/998))
- Support custom hook ([#428](https://github.com/open-mmlab/mmsegmentation/pull/428))
- Add FastFCN benchmark on ADE20K ([#972](https://github.com/open-mmlab/mmsegmentation/pull/972))
- Add codespell pre-commit hook and fix typos ([#920](https://github.com/open-mmlab/mmsegmentation/pull/920))
**Improvements**
- Make inputs & channels smaller in unittests ([#1004](https://github.com/open-mmlab/mmsegmentation/pull/1004))
- Change `self.loss_decode` back to `dict` in Single Loss situation ([#1002](https://github.com/open-mmlab/mmsegmentation/pull/1002))
**Bug Fixes**
- Fix typo in usage example ([#1003](https://github.com/open-mmlab/mmsegmentation/pull/1003))
- Add contiguous after permutation in ViT ([#992](https://github.com/open-mmlab/mmsegmentation/pull/992))
- Fix the invalid link ([#985](https://github.com/open-mmlab/mmsegmentation/pull/985))
- Fix bug in CI with python 3.9 ([#994](https://github.com/open-mmlab/mmsegmentation/pull/994))
- Fix bug when loading class name form file in custom dataset ([#923](https://github.com/open-mmlab/mmsegmentation/pull/923))
**Contributors**
- @ShoupingShan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/923
- @RockeyCoss made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/954
- @HarborYuan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/992
- @lkm2835 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1003
- @gszh made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/428
- @VVsssssk
- @MengzhangLI
- @Junjun2016
### V0.18 (10/07/2021)
**Highlights**
- Support three real-time segmentation models (ICNet [#884](https://github.com/open-mmlab/mmsegmentation/pull/884), BiSeNetV1 [#851](https://github.com/open-mmlab/mmsegmentation/pull/851), and BiSeNetV2 [#804](https://github.com/open-mmlab/mmsegmentation/pull/804))
- Support one efficient segmentation model (FastFCN [#885](https://github.com/open-mmlab/mmsegmentation/pull/885))
- Support one efficient non-local/self-attention based segmentation model (ISANet [#70](https://github.com/open-mmlab/mmsegmentation/pull/70))
- Support COCO-Stuff 10k and 164k datasets ([#625](https://github.com/open-mmlab/mmsegmentation/pull/625))
- Support evaluate concated dataset separately ([#833](https://github.com/open-mmlab/mmsegmentation/pull/833))
- Support loading GT for evaluation from multi-file backend ([#867](https://github.com/open-mmlab/mmsegmentation/pull/867))
**New Features**
- Support three real-time segmentation models (ICNet [#884](https://github.com/open-mmlab/mmsegmentation/pull/884), BiSeNetV1 [#851](https://github.com/open-mmlab/mmsegmentation/pull/851), and BiSeNetV2 [#804](https://github.com/open-mmlab/mmsegmentation/pull/804))
- Support one efficient segmentation model (FastFCN [#885](https://github.com/open-mmlab/mmsegmentation/pull/885))
- Support one efficient non-local/self-attention based segmentation model (ISANet [#70](https://github.com/open-mmlab/mmsegmentation/pull/70))
- Support COCO-Stuff 10k and 164k datasets ([#625](https://github.com/open-mmlab/mmsegmentation/pull/625))
- Support evaluate concated dataset separately ([#833](https://github.com/open-mmlab/mmsegmentation/pull/833))
**Improvements**
- Support loading GT for evaluation from multi-file backend ([#867](https://github.com/open-mmlab/mmsegmentation/pull/867))
- Auto-convert SyncBN to BN when training on DP automatly([#772](https://github.com/open-mmlab/mmsegmentation/pull/772))
- Refactor Swin-Transformer ([#800](https://github.com/open-mmlab/mmsegmentation/pull/800))
**Bug Fixes**
- Update mmcv installation in dockerfile ([#860](https://github.com/open-mmlab/mmsegmentation/pull/860))
- Fix number of iteration bug when resuming checkpoint in distributed train ([#866](https://github.com/open-mmlab/mmsegmentation/pull/866))
- Fix parsing parse in val_step ([#906](https://github.com/open-mmlab/mmsegmentation/pull/906))
### V0.17 (09/01/2021)
**Highlights**
- Support SegFormer
- Support DPT
- Support Dark Zurich and Nighttime Driving datasets
- Support progressive evaluation
**New Features**
- Support SegFormer ([#599](https://github.com/open-mmlab/mmsegmentation/pull/599))
- Support DPT ([#605](https://github.com/open-mmlab/mmsegmentation/pull/605))
- Support Dark Zurich and Nighttime Driving datasets ([#815](https://github.com/open-mmlab/mmsegmentation/pull/815))
- Support progressive evaluation ([#709](https://github.com/open-mmlab/mmsegmentation/pull/709))
**Improvements**
- Add multiscale_output interface and unittests for HRNet ([#830](https://github.com/open-mmlab/mmsegmentation/pull/830))
- Support inherit cityscapes dataset ([#750](https://github.com/open-mmlab/mmsegmentation/pull/750))
- Fix some typos in README.md ([#824](https://github.com/open-mmlab/mmsegmentation/pull/824))
- Delete convert function and add instruction to ViT/Swin README.md ([#791](https://github.com/open-mmlab/mmsegmentation/pull/791))
- Add vit/swin/mit convert weight scripts ([#783](https://github.com/open-mmlab/mmsegmentation/pull/783))
- Add copyright files ([#796](https://github.com/open-mmlab/mmsegmentation/pull/796))
**Bug Fixes**
- Fix invalid checkpoint link in inference_demo.ipynb ([#814](https://github.com/open-mmlab/mmsegmentation/pull/814))
- Ensure that items in dataset have the same order across multi machine ([#780](https://github.com/open-mmlab/mmsegmentation/pull/780))
- Fix the log error ([#766](https://github.com/open-mmlab/mmsegmentation/pull/766))
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
### V0.16 (08/04/2021)
**Highlights**
- Support PyTorch 1.9
- Support SegFormer backbone MiT
- Support md2yml pre-commit hook
- Support frozen stage for HRNet
**New Features**
- Support SegFormer backbone MiT ([#594](https://github.com/open-mmlab/mmsegmentation/pull/594))
- Support md2yml pre-commit hook ([#732](https://github.com/open-mmlab/mmsegmentation/pull/732))
- Support mim ([#717](https://github.com/open-mmlab/mmsegmentation/pull/717))
- Add mmseg2torchserve tool ([#552](https://github.com/open-mmlab/mmsegmentation/pull/552))
**Improvements**
- Support hrnet frozen stage ([#743](https://github.com/open-mmlab/mmsegmentation/pull/743))
- Add template of reimplementation questions ([#741](https://github.com/open-mmlab/mmsegmentation/pull/741))
- Output pdf and epub formats for readthedocs ([#742](https://github.com/open-mmlab/mmsegmentation/pull/742))
- Refine the docstring of ResNet ([#723](https://github.com/open-mmlab/mmsegmentation/pull/723))
- Replace interpolate with resize ([#731](https://github.com/open-mmlab/mmsegmentation/pull/731))
- Update resource limit ([#700](https://github.com/open-mmlab/mmsegmentation/pull/700))
- Update config.md ([#678](https://github.com/open-mmlab/mmsegmentation/pull/678))
**Bug Fixes**
- Fix ATTENTION registry ([#729](https://github.com/open-mmlab/mmsegmentation/pull/729))
- Fix analyze log script ([#716](https://github.com/open-mmlab/mmsegmentation/pull/716))
- Fix doc api display ([#725](https://github.com/open-mmlab/mmsegmentation/pull/725))
- Fix patch_embed and pos_embed mismatch error ([#685](https://github.com/open-mmlab/mmsegmentation/pull/685))
- Fix efficient test for multi-node ([#707](https://github.com/open-mmlab/mmsegmentation/pull/707))
- Fix init_cfg in resnet backbone ([#697](https://github.com/open-mmlab/mmsegmentation/pull/697))
- Fix efficient test bug ([#702](https://github.com/open-mmlab/mmsegmentation/pull/702))
- Fix url error in config docs ([#680](https://github.com/open-mmlab/mmsegmentation/pull/680))
- Fix mmcv installation ([#676](https://github.com/open-mmlab/mmsegmentation/pull/676))
- Fix torch version ([#670](https://github.com/open-mmlab/mmsegmentation/pull/670))
**Contributors**
@sshuair @xiexinch @Junjun2016 @mmeendez8 @xvjiarui @sennnnn @puhsu @BIGWangYuDong @keke1u @daavoo
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
### V0.15 (07/04/2021)
**Highlights**
- Support ViT, SETR, and Swin-Transformer
- Add Chinese documentation
- Unified parameter initialization
**Bug Fixes**
- Fix typo and links ([#608](https://github.com/open-mmlab/mmsegmentation/pull/608))
- Fix Dockerfile ([#607](https://github.com/open-mmlab/mmsegmentation/pull/607))
- Fix ViT init ([#609](https://github.com/open-mmlab/mmsegmentation/pull/609))
- Fix mmcv version compatible table ([#658](https://github.com/open-mmlab/mmsegmentation/pull/658))
- Fix model links of DMNEt ([#660](https://github.com/open-mmlab/mmsegmentation/pull/660))
**New Features**
- Support loading DeiT weights ([#538](https://github.com/open-mmlab/mmsegmentation/pull/538))
- Support SETR ([#531](https://github.com/open-mmlab/mmsegmentation/pull/531), [#635](https://github.com/open-mmlab/mmsegmentation/pull/635))
- Add config and models for ViT backbone with UperHead ([#520](https://github.com/open-mmlab/mmsegmentation/pull/531), [#635](https://github.com/open-mmlab/mmsegmentation/pull/520))
- Support Swin-Transformer ([#511](https://github.com/open-mmlab/mmsegmentation/pull/511))
- Add higher accuracy FastSCNN ([#606](https://github.com/open-mmlab/mmsegmentation/pull/606))
- Add Chinese documentation ([#666](https://github.com/open-mmlab/mmsegmentation/pull/666))
**Improvements**
- Unified parameter initialization ([#567](https://github.com/open-mmlab/mmsegmentation/pull/567))
- Separate CUDA and CPU in github action CI ([#602](https://github.com/open-mmlab/mmsegmentation/pull/602))
- Support persistent dataloader worker ([#646](https://github.com/open-mmlab/mmsegmentation/pull/646))
- Update meta file fields ([#661](https://github.com/open-mmlab/mmsegmentation/pull/661), [#664](https://github.com/open-mmlab/mmsegmentation/pull/664))
### V0.14 (06/02/2021)
**Highlights**
- Support ONNX to TensorRT
- Support MIM
**Bug Fixes**
- Fix ONNX to TensorRT verify ([#547](https://github.com/open-mmlab/mmsegmentation/pull/547))
- Fix save best for EvalHook ([#575](https://github.com/open-mmlab/mmsegmentation/pull/575))
**New Features**
- Support loading DeiT weights ([#538](https://github.com/open-mmlab/mmsegmentation/pull/538))
- Support ONNX to TensorRT ([#542](https://github.com/open-mmlab/mmsegmentation/pull/542))
- Support output results for ADE20k ([#544](https://github.com/open-mmlab/mmsegmentation/pull/544))
- Support MIM ([#549](https://github.com/open-mmlab/mmsegmentation/pull/549))
**Improvements**
- Add option for ViT output shape ([#530](https://github.com/open-mmlab/mmsegmentation/pull/530))
- Infer batch size using len(result) ([#532](https://github.com/open-mmlab/mmsegmentation/pull/532))
- Add compatible table between MMSeg and MMCV ([#558](https://github.com/open-mmlab/mmsegmentation/pull/558))
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
### V0.13 (05/05/2021)
**Highlights**
- Support Pascal Context Class-59 dataset.
- Support Visual Transformer Backbone.
- Support mFscore metric.
**Bug Fixes**
- Fixed Colaboratory tutorial ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451))
- Fixed mIoU calculation range ([#471](https://github.com/open-mmlab/mmsegmentation/pull/471))
- Fixed sem_fpn, unet README.md ([#492](https://github.com/open-mmlab/mmsegmentation/pull/492))
- Fixed `num_classes` in FCN for Pascal Context 60-class dataset ([#488](https://github.com/open-mmlab/mmsegmentation/pull/488))
- Fixed FP16 inference ([#497](https://github.com/open-mmlab/mmsegmentation/pull/497))
**New Features**
- Support dynamic export and visualize to pytorch2onnx ([#463](https://github.com/open-mmlab/mmsegmentation/pull/463))
- Support export to torchscript ([#469](https://github.com/open-mmlab/mmsegmentation/pull/469), [#499](https://github.com/open-mmlab/mmsegmentation/pull/499))
- Support Pascal Context Class-59 dataset ([#459](https://github.com/open-mmlab/mmsegmentation/pull/459))
- Support Visual Transformer backbone ([#465](https://github.com/open-mmlab/mmsegmentation/pull/465))
- Support UpSample Neck ([#512](https://github.com/open-mmlab/mmsegmentation/pull/512))
- Support mFscore metric ([#509](https://github.com/open-mmlab/mmsegmentation/pull/509))
**Improvements**
- Add more CI for PyTorch ([#460](https://github.com/open-mmlab/mmsegmentation/pull/460))
- Add print model graph args for tools/print_config.py ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451))
- Add cfg links in modelzoo README.md ([#468](https://github.com/open-mmlab/mmsegmentation/pull/469))
- Add BaseSegmentor import to segmentors/__init__.py ([#495](https://github.com/open-mmlab/mmsegmentation/pull/495))
- Add MMOCR, MMGeneration links ([#501](https://github.com/open-mmlab/mmsegmentation/pull/501), [#506](https://github.com/open-mmlab/mmsegmentation/pull/506))
- Add Chinese QR code ([#506](https://github.com/open-mmlab/mmsegmentation/pull/506))
- Use MMCV MODEL_REGISTRY ([#515](https://github.com/open-mmlab/mmsegmentation/pull/515))
- Add ONNX testing tools ([#498](https://github.com/open-mmlab/mmsegmentation/pull/498))
- Replace data_dict calling 'img' key to support MMDet3D ([#514](https://github.com/open-mmlab/mmsegmentation/pull/514))
- Support reading class_weight from file in loss function ([#513](https://github.com/open-mmlab/mmsegmentation/pull/513))
- Make tags as comment ([#505](https://github.com/open-mmlab/mmsegmentation/pull/505))
- Use MMCV EvalHook ([#438](https://github.com/open-mmlab/mmsegmentation/pull/438))
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
### V0.12 (04/03/2021)
**Highlights**
- Support FCN-Dilate 6 model.
- Support Dice Loss.
**Bug Fixes**
- Fixed PhotoMetricDistortion Doc ([#388](https://github.com/open-mmlab/mmsegmentation/pull/388))
- Fixed install scripts ([#399](https://github.com/open-mmlab/mmsegmentation/pull/399))
- Fixed Dice Loss multi-class ([#417](https://github.com/open-mmlab/mmsegmentation/pull/417))
**New Features**
- Support Dice Loss ([#396](https://github.com/open-mmlab/mmsegmentation/pull/396))
- Add plot logs tool ([#426](https://github.com/open-mmlab/mmsegmentation/pull/426))
- Add opacity option to show_result ([#425](https://github.com/open-mmlab/mmsegmentation/pull/425))
- Speed up mIoU metric ([#430](https://github.com/open-mmlab/mmsegmentation/pull/430))
**Improvements**
- Refactor unittest file structure ([#440](https://github.com/open-mmlab/mmsegmentation/pull/440))
- Fix typos in the repo ([#449](https://github.com/open-mmlab/mmsegmentation/pull/449))
- Include class-level metrics in the log ([#445](https://github.com/open-mmlab/mmsegmentation/pull/445))
### V0.11 (02/02/2021)
**Highlights**
- Support memory efficient test, add more UNet models.
**Bug Fixes**
- Fixed TTA resize scale ([#334](https://github.com/open-mmlab/mmsegmentation/pull/334))
- Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307))
- Fixed ADE20k test ([#359](https://github.com/open-mmlab/mmsegmentation/pull/359))
**New Features**
- Support memory efficient test ([#330](https://github.com/open-mmlab/mmsegmentation/pull/330))
- Add more UNet benchmarks ([#324](https://github.com/open-mmlab/mmsegmentation/pull/324))
- Support Lovasz Loss ([#351](https://github.com/open-mmlab/mmsegmentation/pull/351))
**Improvements**
- Move train_cfg/test_cfg inside model ([#341](https://github.com/open-mmlab/mmsegmentation/pull/341))
### V0.10 (01/01/2021)
**Highlights**
- Support MobileNetV3, DMNet, APCNet. Add models of ResNet18V1b, ResNet18V1c, ResNet50V1b.
**Bug Fixes**
- Fixed CPU TTA ([#276](https://github.com/open-mmlab/mmsegmentation/pull/276))
- Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307))
**New Features**
- Add ResNet18V1b, ResNet18V1c, ResNet50V1b, ResNet101V1b models ([#316](https://github.com/open-mmlab/mmsegmentation/pull/316))
- Support MobileNetV3 ([#268](https://github.com/open-mmlab/mmsegmentation/pull/268))
- Add 4 retinal vessel segmentation benchmark ([#315](https://github.com/open-mmlab/mmsegmentation/pull/315))
- Support DMNet ([#313](https://github.com/open-mmlab/mmsegmentation/pull/313))
- Support APCNet ([#299](https://github.com/open-mmlab/mmsegmentation/pull/299))
**Improvements**
- Refactor Documentation page ([#311](https://github.com/open-mmlab/mmsegmentation/pull/311))
- Support resize data augmentation according to original image size ([#291](https://github.com/open-mmlab/mmsegmentation/pull/291))
### V0.9 (30/11/2020)
**Highlights**
- Support 4 medical dataset, UNet and CGNet.
**New Features**
- Support RandomRotate transform ([#215](https://github.com/open-mmlab/mmsegmentation/pull/215), [#260](https://github.com/open-mmlab/mmsegmentation/pull/260))
- Support RGB2Gray transform ([#227](https://github.com/open-mmlab/mmsegmentation/pull/227))
- Support Rerange transform ([#228](https://github.com/open-mmlab/mmsegmentation/pull/228))
- Support ignore_index for BCE loss ([#210](https://github.com/open-mmlab/mmsegmentation/pull/210))
- Add modelzoo statistics ([#263](https://github.com/open-mmlab/mmsegmentation/pull/263))
- Support Dice evaluation metric ([#225](https://github.com/open-mmlab/mmsegmentation/pull/225))
- Support Adjust Gamma transform ([#232](https://github.com/open-mmlab/mmsegmentation/pull/232))
- Support CLAHE transform ([#229](https://github.com/open-mmlab/mmsegmentation/pull/229))
**Bug Fixes**
- Fixed detail API link ([#267](https://github.com/open-mmlab/mmsegmentation/pull/267))
### V0.8 (03/11/2020)
**Highlights**
- Support 4 medical dataset, UNet and CGNet.
**New Features**
- Support customize runner ([#118](https://github.com/open-mmlab/mmsegmentation/pull/118))
- Support UNet ([#161](https://github.com/open-mmlab/mmsegmentation/pull/162))
- Support CHASE_DB1, DRIVE, STARE, HRD ([#203](https://github.com/open-mmlab/mmsegmentation/pull/203))
- Support CGNet ([#223](https://github.com/open-mmlab/mmsegmentation/pull/223))
### V0.7 (07/10/2020)
**Highlights**
- Support Pascal Context dataset and customizing class dataset.
**Bug Fixes**
- Fixed CPU inference ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153))
**New Features**
- Add DeepLab OS16 models ([#154](https://github.com/open-mmlab/mmsegmentation/pull/154))
- Support Pascal Context dataset ([#133](https://github.com/open-mmlab/mmsegmentation/pull/133))
- Support customizing dataset classes ([#71](https://github.com/open-mmlab/mmsegmentation/pull/71))
- Support customizing dataset palette ([#157](https://github.com/open-mmlab/mmsegmentation/pull/157))
**Improvements**
- Support 4D tensor output in ONNX ([#150](https://github.com/open-mmlab/mmsegmentation/pull/150))
- Remove redundancies in ONNX export ([#160](https://github.com/open-mmlab/mmsegmentation/pull/160))
- Migrate to MMCV DepthwiseSeparableConv ([#158](https://github.com/open-mmlab/mmsegmentation/pull/158))
- Migrate to MMCV collect_env ([#137](https://github.com/open-mmlab/mmsegmentation/pull/137))
- Use img_prefix and seg_prefix for loading ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153))
- Support new methods i.e. MobileNetV2, EMANet, DNL, PointRend, Semantic FPN, Fast-SCNN, ResNeSt.
- Fixed sliding inference ONNX export ([#90](https://github.com/open-mmlab/mmsegmentation/pull/90))
**New Features**
- Support MobileNet v2 ([#86](https://github.com/open-mmlab/mmsegmentation/pull/86))
- Support EMANet ([#34](https://github.com/open-mmlab/mmsegmentation/pull/34))
- Support DNL ([#37](https://github.com/open-mmlab/mmsegmentation/pull/37))
- Support PointRend ([#109](https://github.com/open-mmlab/mmsegmentation/pull/109))
- Support Semantic FPN ([#94](https://github.com/open-mmlab/mmsegmentation/pull/94))
- Support Fast-SCNN ([#58](https://github.com/open-mmlab/mmsegmentation/pull/58))
- Support ResNeSt backbone ([#47](https://github.com/open-mmlab/mmsegmentation/pull/47))
- Support ONNX export (experimental) ([#12](https://github.com/open-mmlab/mmsegmentation/pull/12))
**Improvements**
- Support Upsample in ONNX ([#100](https://github.com/open-mmlab/mmsegmentation/pull/100))
- Support Windows install (experimental) ([#75](https://github.com/open-mmlab/mmsegmentation/pull/75))
- Add more OCRNet results ([#20](https://github.com/open-mmlab/mmsegmentation/pull/20))
- Add PyTorch 1.6 CI ([#64](https://github.com/open-mmlab/mmsegmentation/pull/64))
- Get version and githash automatically ([#55](https://github.com/open-mmlab/mmsegmentation/pull/55))
- Support FP16 and more generalized OHEM
- Fixed Pascal VOC conversion script (#19)
- Fixed OHEM weight assign bug (#54)
- Fixed palette type when palette is not given (#27)
- Support FP16 (#21)
- Generalized OHEM (#54)
- Add load-from flag (#33)
- Fixed training tricks doc about different learning rates of model (#26)