Newer
Older
In this tutorial, we introduce the design of transforms pipeline in MMSegmentation.
The structure of this guide is as follows:
- [Data Transforms](#data-transforms)
- [Design of Data pipelines](#design-of-data-pipelines)
- [Customization data transformation](#customization-data-transformation)
## Design of Data pipelines
Following typical conventions, we use `Dataset` and `DataLoader` for data loading
with multiple workers. `Dataset` returns a dict of data items corresponding
the arguments of models' forward method.
Since the data in semantic segmentation may not be the same size,
we introduce a new `DataContainer` type in MMCV to help collect and distribute
data of different size.
See [here](https://github.com/open-mmlab/mmcv/blob/master/mmcv/parallel/data_container.py) for more details.
In 1.x version of MMSegmentation, all data transformations are inherited from [`BaseTransform`](https://github.com/open-mmlab/mmcv/blob/2.x/mmcv/transforms/base.py#L6).
The input and output types of transformations are both dict. A simple example is as follows:
```python
>>> from mmseg.datasets.transforms import LoadAnnotations
>>> transforms = LoadAnnotations()
>>> img_path = './data/cityscapes/leftImg8bit/train/aachen/aachen_000000_000019_leftImg8bit.png.png'
>>> gt_path = './data/cityscapes/gtFine/train/aachen/aachen_000015_000019_gtFine_instanceTrainIds.png'
>>> results = dict(
>>> img_path=img_path,
>>> seg_map_path=gt_path,
>>> reduce_zero_label=False,
>>> seg_fields=[])
>>> data_dict = transforms(results)
>>> print(data_dict.keys())
dict_keys(['img_path', 'seg_map_path', 'reduce_zero_label', 'seg_fields', 'gt_seg_map'])
```
The data preparation pipeline and the dataset are decomposed. Usually a dataset
defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict.
A pipeline consists of a sequence of operations. Each operation takes a dict as input and also outputs a dict for the next transform.
The operations are categorized into data loading, pre-processing, formatting and test-time augmentation.
```python
crop_size = (512, 1024)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(
type='RandomResize',
scale=(2048, 1024),
ratio_range=(0.5, 2.0),
keep_ratio=True),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='Resize', scale=(2048, 1024), keep_ratio=True),
# add loading annotation after ``Resize`` because ground truth
dict(type='LoadAnnotations'),
dict(type='PackSegInputs')
For each operation, we list the related dict fields that are `added`/`updated`/`removed`.
Before pipelines, the information we can directly obtain from the datasets are `img_path` and `seg_map_path`.
`LoadAnnotations`: Load semantic segmentation maps provided by dataset.
`RandomResize`: Random resize image & segmentation map.
- add: `scale`, `scale_factor`, `keep_ratio`
- update: `img`, `img_shape`, `gt_seg_map`
- add: `scale`, `scale_factor`, `keep_ratio`
- update: `img`, `gt_seg_map`, `img_shape`
`RandomCrop`: Random crop image & segmentation map.
`RandomFlip`: Flip the image & segmentation map.
- add: `flip`, `flip_direction`
- update: `img`, `gt_seg_map`
`PhotoMetricDistortion`: Apply photometric distortion to image sequentially,
every transformation is applied with a probability of 0.5.
The position of random contrast is in second or second to last(mode 0 or 1 below, respectively).
```
1. random brightness
2. random contrast (mode 0)
3. convert color from BGR to HSV
4. random saturation
5. random hue
6. convert color from HSV to BGR
7. random contrast (mode 1)
```
- update: `img`
`PackSegInputs`: Pack the inputs data for the semantic segmentation.
- remove: keys specified by `meta_keys` (merged into the metainfo of data_sample), all other keys
The customized data transformation must inherited from `BaseTransform` and implement `transform` function.
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
Here we use a simple flipping transformation as example:
```python
import random
import mmcv
from mmcv.transforms import BaseTransform, TRANSFORMS
@TRANSFORMS.register_module()
class MyFlip(BaseTransform):
def __init__(self, direction: str):
super().__init__()
self.direction = direction
def transform(self, results: dict) -> dict:
img = results['img']
results['img'] = mmcv.imflip(img, direction=self.direction)
return results
```
Thus, we can instantiate a `MyFlip` object and use it to process the data dict.
```python
import numpy as np
transform = MyFlip(direction='horizontal')
data_dict = {'img': np.random.rand(224, 224, 3)}
data_dict = transform(data_dict)
processed_img = data_dict['img']
```
Or, we can use `MyFlip` transformation in data pipeline in our config file.
```python
pipeline = [
...
dict(type='MyFlip', direction='horizontal'),
...
]
```
Note that if you want to use `MyFlip` in config, you must ensure the file containing `MyFlip` is imported during runtime.