Newer
Older
#include "LiggghtsCouplingCoProcessor.h"
#include "GbSphere3D.h"
#include "MPICommunicator.h"
#include "CoProcessor.h"
#include "LiggghtsCouplingWrapper.h"
#include "Grid3D.h"
#include "Block3D.h"
#include "LBMKernel.h"
#include "DistributionArray3D.h"
#include "DataSet3D.h"
#include "IBcumulantK17LBMKernel.h"
LiggghtsCouplingCoProcessor::LiggghtsCouplingCoProcessor(SPtr<Grid3D> grid, SPtr<UbScheduler> s,
SPtr<Communicator> comm, LiggghtsCouplingWrapper &wrapper,
int demSteps)
: CoProcessor(grid, s), comm(comm), wrapper(wrapper), demSteps(demSteps)
//gridRank = comm->getProcessID();
//minInitLevel = this->grid->getCoarsestInitializedLevel();
//maxInitLevel = this->grid->getFinestInitializedLevel();
//blockVector.resize(maxInitLevel + 1);
//for (int level = minInitLevel; level <= maxInitLevel; level++) {
// grid->getBlocks(level, gridRank, true, blockVector[level]);
//}
}
LiggghtsCouplingCoProcessor::~LiggghtsCouplingCoProcessor()
{
}
void LiggghtsCouplingCoProcessor::process(double actualTimeStep)
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
{
setSpheresOnLattice();
wrapper.run(demSteps);
std::cout << "step: " << actualTimeStep << "\n";
}
void LiggghtsCouplingCoProcessor::setSpheresOnLattice()
{
std::vector<int> excludeType;
int nPart = wrapper.lmp->atom->nlocal + wrapper.lmp->atom->nghost;
for (int iS = 0; iS < nPart; iS++)
{
int type = (int)wrapper.lmp->atom->type[iS];
bool excludeFlag(false);
for (int iT = 0; iT < excludeType.size(); iT++) {
//std::cout << iS << " " << type << " " << excludeType[iT] << std::endl;
if (type == excludeType[iT]) {
excludeFlag = true;
break;
}
}
if (excludeFlag)
continue;
double x[3], v[3], omega[3];
double r;
int id = wrapper.lmp->atom->tag[iS];
for (int i = 0; i < 3; i++)
{
x[i] = wrapper.lmp->atom->x[iS][i];
v[i] = wrapper.lmp->atom->v[iS][i];
omega[i] = wrapper.lmp->atom->omega[iS][i];
}
r = wrapper.lmp->atom->radius[iS];
std::cout << "x[0] = " << x[0] << ", x[1] = " << x[1] << ", x[2] = " << x[2] << std::endl;
std::cout << "v[0] = " << v[0] << ", v[1] = " << v[1] << ", v[2] = " << v[2] << std::endl;
std::cout << "omega[0] = " << omega[0] << ", omega[1] = " << omega[1] << ", omega[2] = " << omega[2] << std::endl;
std::cout << "r = " << r << std::endl;
setSingleSphere3D(x, v, omega, r, id);
}
}
void LiggghtsCouplingCoProcessor::getForcesFromLattice() {}
void LiggghtsCouplingCoProcessor::setSingleSphere3D(double *x, double *v, double *omega, /* double *com,*/ double r,
int id /*, bool initVelFlag*/)
{
int level = 0;
//UbTupleInt3 bi = grid->getBlockIndexes(x[0], x[1], x[2], level);
//SPtr<Block3D> block = grid->getBlock(val<1>(bi), val<2>(bi), val<3>(bi), level);
std::vector<SPtr<Block3D>> blocks;
grid->getBlocksByCuboid(level, x[0] - r, x[1] - r, x[2] - r, x[0] + r, x[1] + r, x[2] + r, blocks);
for (SPtr<Block3D> block : blocks) {
if (block) {
SPtr<ILBMKernel> kernel = block->getKernel();
// SPtr<BCArray3D> bcArray = kernel->getBCProcessor()->getBCArray();
SPtr<DistributionArray3D> distributions = kernel->getDataSet()->getFdistributions();
CbArray3D<SPtr<IBdynamicsParticleData>, IndexerX3X2X1>::CbArray3DPtr particleData =
dynamicPointerCast<IBcumulantK17LBMKernel>(kernel)->getParticleData();
if (!particleData)
continue;
int minX1 = 1;
int minX2 = 1;
int minX3 = 1;
int maxX1 = (int)(distributions->getNX1()) - 1;
int maxX2 = (int)(distributions->getNX2()) - 1;
int maxX3 = (int)(distributions->getNX3()) - 1;
for (int ix3 = minX3; ix3 < maxX3; ix3++) {
for (int ix2 = minX2; ix2 < maxX2; ix2++) {
for (int ix1 = minX1; ix1 < maxX1; ix1++) {
Vector3D nX = grid->getNodeCoordinates(block, ix1, ix2, ix3);
double const dx = nX[0] - x[0];
double const dy = nX[1] - x[1];
double const dz = nX[2] - x[2];
double const sf = calcSolidFraction(dx, dy, dz, r);
double const sf_old = (*particleData)(ix1,ix2,ix3)->solidFraction;
int const id_old = (int)(*particleData)(ix1,ix2,ix3)->partId;
int const decFlag = (sf > SOLFRAC_MIN) + 2 * (sf_old > SOLFRAC_MIN);
switch (decFlag) {
case 0: // sf == 0 && sf_old == 0
setToZero(*(*particleData)(ix1, ix2, ix3).get());
break; // do nothing
case 1: // sf > 0 && sf_old == 0
setValues(*(*particleData)(ix1, ix2, ix3).get(), sf, dx, dy, dz, omega, id);
break;
case 2: // sf == 0 && sf_old > 0
if (id_old == id) // then particle has left this cell
setToZero(*(*particleData)(ix1, ix2, ix3).get());
break; // else do nothing
case 3: // sf > 0 && sf_old > 0
if (sf > sf_old || id_old == id)
setValues(*(*particleData)(ix1, ix2, ix3).get(), sf, dx, dy, dz, omega, id);
break; // else do nothing
}
// if desired, initialize interior of sphere with sphere velocity
// if (initVelFlag && sf > SOLFRAC_MAX)
// cell.defineVelocity(particleData->uPart);
}
}
}
}
}
}
double LiggghtsCouplingCoProcessor::calcSolidFraction(double const dx_, double const dy_, double const dz_,
double const r_)
{
static int const slicesPerDim = 5;
static double const sliceWidth = 1. / ((double)slicesPerDim);
static double const fraction = 1. / ((double)(slicesPerDim * slicesPerDim * slicesPerDim));
// should be sqrt(3.)/2.
// add a little to avoid roundoff errors
static const double sqrt3half = (double)sqrt(3.1) / 2.;
double const dist = dx_ * dx_ + dy_ * dy_ + dz_ * dz_;
double const r_p = r_ + sqrt3half;
if (dist > r_p * r_p)
return 0;
double const r_m = r_ - sqrt3half;
if (dist < r_m * r_m)
return 1;
double const r_sq = r_ * r_;
double dx_sq[slicesPerDim], dy_sq[slicesPerDim], dz_sq[slicesPerDim];
// pre-calculate d[xyz]_sq for efficiency
for (int i = 0; i < slicesPerDim; i++) {
double const delta = -0.5 + ((double)i + 0.5) * sliceWidth;
double const dx = dx_ + delta;
dx_sq[i] = dx * dx;
double const dy = dy_ + delta;
dy_sq[i] = dy * dy;
double const dz = dz_ + delta;
dz_sq[i] = dz * dz;
}
unsigned int n(0);
for (int i = 0; i < slicesPerDim; i++) {
for (int j = 0; j < slicesPerDim; j++) {
for (int k = 0; k < slicesPerDim; k++) {
n += (dx_sq[i] + dy_sq[j] + dz_sq[k] < r_sq);
}
}
}
return fraction * ((double)n);
}
void LiggghtsCouplingCoProcessor::setValues(IBdynamicsParticleData &p, double const sf, double const dx,
double const dy, double const dz, double* omega, int id)
{
//p.uPart.from_cArray(v);
if (omega != 0) {
p.uPart[0] += omega[1] * dz - omega[2] * dy;
p.uPart[1] += -omega[0] * dz + omega[2] * dx;
p.uPart[2] += omega[0] * dy - omega[1] * dx;
}
p.solidFraction = sf;
p.partId = id;
}
void LiggghtsCouplingCoProcessor::setToZero(IBdynamicsParticleData &p)
p.uPart[0] = 0;
p.uPart[1] = 0;
p.uPart[2] = 0;
p.solidFraction = 0;
p.partId = 0;