Collections: - Name: FCN Metadata: Training Data: - Cityscapes - ADE20K - Pascal VOC 2012 + Aug - Pascal Context - Pascal Context 59 Paper: URL: https://arxiv.org/abs/1411.4038 Title: Fully Convolutional Networks for Semantic Segmentation README: configs/fcn/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 Version: v0.17.0 Converted From: Code: https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn Models: - Name: fcn_r50-d8_4xb2-40k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 239.81 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 5.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 72.25 mIoU(ms+flip): 73.36 Config: configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth - Name: fcn_r101-d8_4xb2-40k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 375.94 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 75.45 mIoU(ms+flip): 76.58 Config: configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth - Name: fcn_r50-d8_4xb2-40k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 555.56 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 6.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 71.47 mIoU(ms+flip): 72.54 Config: configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth - Name: fcn_r101-d8_4xb2-40k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 840.34 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 10.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 73.93 mIoU(ms+flip): 75.14 Config: configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth - Name: fcn_r18-d8_4xb2-80k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-18-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 68.26 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 1.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 71.11 mIoU(ms+flip): 72.91 Config: configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth - Name: fcn_r50-d8_4xb2-80k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 73.61 mIoU(ms+flip): 74.24 Config: configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth - Name: fcn_r101-d8_4xb2-80k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 75.13 mIoU(ms+flip): 75.94 Config: configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth - Name: fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 115.74 hardware: V100 backend: PyTorch batch size: 1 mode: AMP resolution: (512,1024) Training Memory (GB): 5.37 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.8 Config: configs/fcn/fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921-fb13e883.pth - Name: fcn_r18-d8_4xb2-80k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-18-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 156.25 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 1.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 70.8 mIoU(ms+flip): 73.16 Config: configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth - Name: fcn_r50-d8_4xb2-80k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 72.64 mIoU(ms+flip): 73.32 Config: configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749-f5caeabc.pth - Name: fcn_r101-d8_4xb2-80k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 75.52 mIoU(ms+flip): 76.61 Config: configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354-45cbac68.pth - Name: fcn_r18b-d8_4xb2-80k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-18b-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 59.74 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 1.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 70.24 mIoU(ms+flip): 72.77 Config: configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes_20201225_230143-92c0f445.pth - Name: fcn_r50b-d8_4xb2-80k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-50b-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 238.1 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 5.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 75.65 mIoU(ms+flip): 77.59 Config: configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes_20201225_094221-82957416.pth - Name: fcn_r101b-d8_4xb2-80k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-101b-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 366.3 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 9.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.37 mIoU(ms+flip): 78.77 Config: configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes_20201226_160213-4543858f.pth - Name: fcn_r18b-d8_4xb2-80k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-18b-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 149.25 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 1.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 69.66 mIoU(ms+flip): 72.07 Config: configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes_20201226_004430-32d504e5.pth - Name: fcn_r50b-d8_4xb2-80k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-50b-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 549.45 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 6.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 73.83 mIoU(ms+flip): 76.6 Config: configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes_20201225_094223-94552d38.pth - Name: fcn_r101b-d8_4xb2-80k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-101b-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 869.57 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 10.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.02 mIoU(ms+flip): 78.67 Config: configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes_20201226_170012-82be37e2.pth - Name: fcn-d6_r50-d16_4xb2-40k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-50-D16 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 97.85 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 3.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.06 mIoU(ms+flip): 78.85 Config: configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes_20210305_130133-98d5d1bc.pth - Name: fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-50-D16 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 96.62 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.27 mIoU(ms+flip): 78.88 Config: configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes_20210306_115604-133c292f.pth - Name: fcn-d6_r50-d16_4xb2-40k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-50-D16 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 239.81 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 3.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.82 mIoU(ms+flip): 78.22 Config: configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes_20210305_185744-1aab18ed.pth - Name: fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-50-D16 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 240.96 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.04 mIoU(ms+flip): 78.4 Config: configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes_20210305_200413-109d88eb.pth - Name: fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-101-D16 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 124.38 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 4.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.36 mIoU(ms+flip): 79.18 Config: configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes_20210305_130337-9cf2b450.pth - Name: fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-101-D16 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 121.07 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.46 mIoU(ms+flip): 80.42 Config: configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes_20210308_102747-cb336445.pth - Name: fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-101-D16 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 320.51 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 5.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.28 mIoU(ms+flip): 78.95 Config: configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes_20210308_102453-60b114e9.pth - Name: fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-101-D16 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 311.53 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.06 mIoU(ms+flip): 79.58 Config: configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes_20210306_120016-e33adc4f.pth - Name: fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-50b-D16 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 98.43 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 3.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.99 mIoU(ms+flip): 79.03 Config: configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes/fcn_d6_r50b-d16_512x1024_80k_cityscapes_20210311_125550-6a0b62e9.pth - Name: fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-50b-D16 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 239.81 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 3.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.86 mIoU(ms+flip): 78.52 Config: configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes/fcn_d6_r50b-d16_769x769_80k_cityscapes_20210311_131012-d665f231.pth - Name: fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: R-101b-D16 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 118.2 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 4.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.72 mIoU(ms+flip): 79.53 Config: configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes/fcn_d6_r101b-d16_512x1024_80k_cityscapes_20210311_144305-3f2eb5b4.pth - Name: fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769 In Collection: FCN Metadata: backbone: R-101b-D16 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 301.2 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 4.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.34 mIoU(ms+flip): 78.91 Config: configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes/fcn_d6_r101b-d16_769x769_80k_cityscapes_20210311_154527-c4d8bfbc.pth - Name: fcn_r50-d8_4xb4-80k_ade20k-512x512 In Collection: FCN Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 42.57 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 8.5 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 35.94 mIoU(ms+flip): 37.94 Config: configs/fcn/fcn_r50-d8_4xb4-80k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth - Name: fcn_r101-d8_4xb4-80k_ade20k-512x512 In Collection: FCN Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 67.66 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 12.0 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 39.61 mIoU(ms+flip): 40.83 Config: configs/fcn/fcn_r101-d8_4xb4-80k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143-bc1809f7.pth - Name: fcn_r50-d8_4xb4-160k_ade20k-512x512 In Collection: FCN Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 36.1 mIoU(ms+flip): 38.08 Config: configs/fcn/fcn_r50-d8_4xb4-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713-4edbc3b4.pth - Name: fcn_r101-d8_4xb4-160k_ade20k-512x512 In Collection: FCN Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 39.91 mIoU(ms+flip): 41.4 Config: configs/fcn/fcn_r101-d8_4xb4-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816-fd192bd5.pth - Name: fcn_r50-d8_4xb4-20k_voc12aug-512x512 In Collection: FCN Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 42.96 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 5.7 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 67.08 mIoU(ms+flip): 69.94 Config: configs/fcn/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715-52dc5306.pth - Name: fcn_r101-d8_4xb4-20k_voc12aug-512x512 In Collection: FCN Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 67.52 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 71.16 mIoU(ms+flip): 73.57 Config: configs/fcn/fcn_r101-d8_4xb4-20k_voc12aug-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842-0bb4e798.pth - Name: fcn_r50-d8_4xb4-40k_voc12aug-512x512 In Collection: FCN Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 66.97 mIoU(ms+flip): 69.04 Config: configs/fcn/fcn_r50-d8_4xb4-40k_voc12aug-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222-5e2dbf40.pth - Name: fcn_r101-d8_4xb4-40k_voc12aug-512x512 In Collection: FCN Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 69.91 mIoU(ms+flip): 72.38 Config: configs/fcn/fcn_r101-d8_4xb4-40k_voc12aug-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240-4c8bcefd.pth - Name: fcn_r101-d8_4xb4-40k_pascal-context-480x480 In Collection: FCN Metadata: backbone: R-101-D8 crop size: (480,480) lr schd: 40000 inference time (ms/im): - value: 100.7 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (480,480) Results: - Task: Semantic Segmentation Dataset: Pascal Context Metrics: mIoU: 44.43 mIoU(ms+flip): 45.63 Config: configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-480x480.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context_20210421_154757-b5e97937.pth - Name: fcn_r101-d8_4xb4-80k_pascal-context-480x480 In Collection: FCN Metadata: backbone: R-101-D8 crop size: (480,480) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Pascal Context Metrics: mIoU: 44.13 mIoU(ms+flip): 45.26 Config: configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-480x480.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context_20210421_163310-4711813f.pth - Name: fcn_r101-d8_4xb4-40k_pascal-context-59-480x480 In Collection: FCN Metadata: backbone: R-101-D8 crop size: (480,480) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal Context 59 Metrics: mIoU: 48.42 mIoU(ms+flip): 50.4 Config: configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-59-480x480.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59_20210415_230724-8cf83682.pth - Name: fcn_r101-d8_4xb4-80k_pascal-context-59-480x480 In Collection: FCN Metadata: backbone: R-101-D8 crop size: (480,480) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Pascal Context 59 Metrics: mIoU: 49.35 mIoU(ms+flip): 51.38 Config: configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-59-480x480.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59_20210416_110804-9a6f2c94.pth