# Adding New Data Transforms 1. Write a new pipeline in any file, e.g., `my_pipeline.py`. It takes a dict as input and return a dict. ```python from mmseg.datasets import TRANSFORMS @TRANSFORMS.register_module() class MyTransform: def __call__(self, results): results['dummy'] = True return results ``` 2. Import the new class. ```python from .my_pipeline import MyTransform ``` 3. Use it in config files. ```python crop_size = (512, 1024) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='RandomResize', scale=(2048, 1024), ratio_range=(0.5, 2.0), keep_ratio=True), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PhotoMetricDistortion'), dict(type='MyTransform'), dict(type='PackSegInputs'), ] ```