## Changelog ### V0.22 (3/04/2022) **Highlights** - Officially Support ConvNeXt: A ConvNet for the 2020s. Please use the latest MMClassification (0.21.0) to try it out. - Support iSAID aerial Dataset. - Officially Support inference on Windows OS. **New Features** - Support ConvNeXt: A ConvNet for the 2020s. ([#1216](https://github.com/open-mmlab/mmsegmentation/pull/1216)) - Support iSAID aerial Dataset. ([#1115](https://github.com/open-mmlab/mmsegmentation/pull/1115) - Generating and plotting confusion matrix. ([#1301](https://github.com/open-mmlab/mmsegmentation/pull/1301)) **Improvements** - Refactor 4 decoder heads (ASPP, FCN, PSP, UPer): Split forward function into `_forward_feature` and `cls_seg`. ([#1299](https://github.com/open-mmlab/mmsegmentation/pull/1299)) - Add `min_size` arg in `Resize` to keep the shape after resize bigger than slide window. ([#1318](https://github.com/open-mmlab/mmsegmentation/pull/1318)) - Revise pre-commit-hooks. ([#1315](https://github.com/open-mmlab/mmsegmentation/pull/1315)) - Add win-ci. ([#1296](https://github.com/open-mmlab/mmsegmentation/pull/1296)) **Bug Fixes** - Fix `mlp_ratio` type in Swin Transformer. ([#1274](https://github.com/open-mmlab/mmsegmentation/pull/1274)) - Fix path errors in `./demo` . ([#1269](https://github.com/open-mmlab/mmsegmentation/pull/1269)) - Fix bug in conversion of potsdam. ([#1279](https://github.com/open-mmlab/mmsegmentation/pull/1279)) - Make accuracy take into account `ignore_index`. ([#1259](https://github.com/open-mmlab/mmsegmentation/pull/1259)) - Add Pytorch HardSwish assertion in unit test. ([#1294](https://github.com/open-mmlab/mmsegmentation/pull/1294)) - Fix wrong palette value in vaihingen. ([#1292](https://github.com/open-mmlab/mmsegmentation/pull/1292)) - Fix the bug that SETR cannot load pretrain. ([#1293](https://github.com/open-mmlab/mmsegmentation/pull/1293)) - Update correct `In Collection` in metafile of each configs. ([#1239](https://github.com/open-mmlab/mmsegmentation/pull/1239)) - Upload completed STDC models. ([#1332](https://github.com/open-mmlab/mmsegmentation/pull/1332)) - Fix `DNLHead` exports onnx inference difference type Cast error. ([#1161](https://github.com/open-mmlab/mmsegmentation/pull/1332)) **Contributors** - @JiaYanhao made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1269 - @andife made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1281 - @SBCV made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1279 - @HJoonKwon made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1259 - @Tsingularity made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1290 - @Waterman0524 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1115 - @MeowZheng made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1315 - @linfangjian01 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1318 ### V0.21.1 (2/9/2022) **Bug Fixes** - Fix typos in docs. ([#1263](https://github.com/open-mmlab/mmsegmentation/pull/1263)) - Fix repeating log by `setup_multi_processes`. ([#1267](https://github.com/open-mmlab/mmsegmentation/pull/1267)) - Upgrade isort in pre-commit hook. ([#1270](https://github.com/open-mmlab/mmsegmentation/pull/1270)) **Improvements** - Use MMCV load_state_dict func in ViT/Swin. ([#1272](https://github.com/open-mmlab/mmsegmentation/pull/1272)) - Add exception for PointRend for support CPU-only. ([#1271](https://github.com/open-mmlab/mmsegmentation/pull/1270)) ### V0.21 (1/29/2022) **Highlights** - Officially Support CPUs training and inference, please use the latest MMCV (1.4.4) to try it out. - Support Segmenter: Transformer for Semantic Segmentation (ICCV'2021). - Support ISPRS Potsdam and Vaihingen Dataset. - Add Mosaic transform and `MultiImageMixDataset` class in `dataset_wrappers`. **New Features** - Support Segmenter: Transformer for Semantic Segmentation (ICCV'2021) ([#955](https://github.com/open-mmlab/mmsegmentation/pull/955)) - Support ISPRS Potsdam and Vaihingen Dataset ([#1097](https://github.com/open-mmlab/mmsegmentation/pull/1097), [#1171](https://github.com/open-mmlab/mmsegmentation/pull/1171)) - Add segformer‘s benchmark on cityscapes ([#1155](https://github.com/open-mmlab/mmsegmentation/pull/1155)) - Add auto resume ([#1172](https://github.com/open-mmlab/mmsegmentation/pull/1172)) - Add Mosaic transform and `MultiImageMixDataset` class in `dataset_wrappers` ([#1093](https://github.com/open-mmlab/mmsegmentation/pull/1093), [#1105](https://github.com/open-mmlab/mmsegmentation/pull/1105)) - Add log collector ([#1175](https://github.com/open-mmlab/mmsegmentation/pull/1175)) **Improvements** - New-style CPU training and inference ([#1251](https://github.com/open-mmlab/mmsegmentation/pull/1251)) - Add UNet benchmark with multiple losses supervision ([#1143](https://github.com/open-mmlab/mmsegmentation/pull/1143)) **Bug Fixes** - Fix the model statistics in doc for readthedoc ([#1153](https://github.com/open-mmlab/mmsegmentation/pull/1153)) - Set random seed for `palette` if not given ([#1152](https://github.com/open-mmlab/mmsegmentation/pull/1152)) - Add `COCOStuffDataset` in `class_names.py` ([#1222](https://github.com/open-mmlab/mmsegmentation/pull/1222)) - Fix bug in non-distributed multi-gpu training/testing ([#1247](https://github.com/open-mmlab/mmsegmentation/pull/1247)) - Delete unnecessary lines of STDCHead ([#1231](https://github.com/open-mmlab/mmsegmentation/pull/1231)) **Contributors** - @jbwang1997 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1152 - @BeaverCC made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1206 - @Echo-minn made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1214 - @rstrudel made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/955 ### V0.20.2 (12/15/2021) **Bug Fixes** - Revise --option to --options to avoid BC-breaking. ([#1140](https://github.com/open-mmlab/mmsegmentation/pull/1140)) ### V0.20.1 (12/14/2021) **Improvements** - Change options to cfg-options ([#1129](https://github.com/open-mmlab/mmsegmentation/pull/1129)) **Bug Fixes** - Fix `<!-- [ABSTRACT] -->` in metafile. ([#1127](https://github.com/open-mmlab/mmsegmentation/pull/1127)) - Fix correct `num_classes` of HRNet in `LoveDA` dataset ([#1136](https://github.com/open-mmlab/mmsegmentation/pull/1136)) ### V0.20 (12/10/2021) **Highlights** - Support Twins ([#989](https://github.com/open-mmlab/mmsegmentation/pull/989)) - Support a real-time segmentation model STDC ([#995](https://github.com/open-mmlab/mmsegmentation/pull/995)) - Support a widely-used segmentation model in lane detection ERFNet ([#960](https://github.com/open-mmlab/mmsegmentation/pull/960)) - Support A Remote Sensing Land-Cover Dataset LoveDA ([#1028](https://github.com/open-mmlab/mmsegmentation/pull/1028)) - Support focal loss ([#1024](https://github.com/open-mmlab/mmsegmentation/pull/1024)) **New Features** - Support Twins ([#989](https://github.com/open-mmlab/mmsegmentation/pull/989)) - Support a real-time segmentation model STDC ([#995](https://github.com/open-mmlab/mmsegmentation/pull/995)) - Support a widely-used segmentation model in lane detection ERFNet ([#960](https://github.com/open-mmlab/mmsegmentation/pull/960)) - Add SETR cityscapes benchmark ([#1087](https://github.com/open-mmlab/mmsegmentation/pull/1087)) - Add BiSeNetV1 COCO-Stuff 164k benchmark ([#1019](https://github.com/open-mmlab/mmsegmentation/pull/1019)) - Support focal loss ([#1024](https://github.com/open-mmlab/mmsegmentation/pull/1024)) - Add Cutout transform ([#1022](https://github.com/open-mmlab/mmsegmentation/pull/1022)) **Improvements** - Set a random seed when the user does not set a seed ([#1039](https://github.com/open-mmlab/mmsegmentation/pull/1039)) - Add CircleCI setup ([#1086](https://github.com/open-mmlab/mmsegmentation/pull/1086)) - Skip CI on ignoring given paths ([#1078](https://github.com/open-mmlab/mmsegmentation/pull/1078)) - Add abstract and image for every paper ([#1060](https://github.com/open-mmlab/mmsegmentation/pull/1060)) - Create a symbolic link on windows ([#1090](https://github.com/open-mmlab/mmsegmentation/pull/1090)) - Support video demo using trained model ([#1014](https://github.com/open-mmlab/mmsegmentation/pull/1014)) **Bug Fixes** - Fix incorrectly loading init_cfg or pretrained models of several transformer models ([#999](https://github.com/open-mmlab/mmsegmentation/pull/999), [#1069](https://github.com/open-mmlab/mmsegmentation/pull/1069), [#1102](https://github.com/open-mmlab/mmsegmentation/pull/1102)) - Fix EfficientMultiheadAttention in SegFormer ([#1037](https://github.com/open-mmlab/mmsegmentation/pull/1037)) - Remove `fp16` folder in `configs` ([#1031](https://github.com/open-mmlab/mmsegmentation/pull/1031)) - Fix several typos in .yml file (Dice Metric [#1041](https://github.com/open-mmlab/mmsegmentation/pull/1041), ADE20K dataset [#1120](https://github.com/open-mmlab/mmsegmentation/pull/1120), Training Memory (GB) [#1083](https://github.com/open-mmlab/mmsegmentation/pull/1083)) - Fix test error when using `--show-dir` ([#1091](https://github.com/open-mmlab/mmsegmentation/pull/1091)) - Fix dist training infinite waiting issue ([#1035](https://github.com/open-mmlab/mmsegmentation/pull/1035)) - Change the upper version of mmcv to 1.5.0 ([#1096](https://github.com/open-mmlab/mmsegmentation/pull/1096)) - Fix symlink failure on Windows ([#1038](https://github.com/open-mmlab/mmsegmentation/pull/1038)) - Cancel previous runs that are not completed ([#1118](https://github.com/open-mmlab/mmsegmentation/pull/1118)) - Unified links of readthedocs in docs ([#1119](https://github.com/open-mmlab/mmsegmentation/pull/1119)) **Contributors** - @Junjue-Wang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1028 - @ddebby made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1066 - @del-zhenwu made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1078 - @KangBK0120 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1106 - @zergzzlun made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1091 - @fingertap made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1035 - @irvingzhang0512 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1014 - @littleSunlxy made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/989 - @lkm2835 - @RockeyCoss - @MengzhangLI - @Junjun2016 - @xiexinch - @xvjiarui ### V0.19 (11/02/2021) **Highlights** - Support TIMMBackbone wrapper ([#998](https://github.com/open-mmlab/mmsegmentation/pull/998)) - Support custom hook ([#428](https://github.com/open-mmlab/mmsegmentation/pull/428)) - Add codespell pre-commit hook ([#920](https://github.com/open-mmlab/mmsegmentation/pull/920)) - Add FastFCN benchmark on ADE20K ([#972](https://github.com/open-mmlab/mmsegmentation/pull/972)) **New Features** - Support TIMMBackbone wrapper ([#998](https://github.com/open-mmlab/mmsegmentation/pull/998)) - Support custom hook ([#428](https://github.com/open-mmlab/mmsegmentation/pull/428)) - Add FastFCN benchmark on ADE20K ([#972](https://github.com/open-mmlab/mmsegmentation/pull/972)) - Add codespell pre-commit hook and fix typos ([#920](https://github.com/open-mmlab/mmsegmentation/pull/920)) **Improvements** - Make inputs & channels smaller in unittests ([#1004](https://github.com/open-mmlab/mmsegmentation/pull/1004)) - Change `self.loss_decode` back to `dict` in Single Loss situation ([#1002](https://github.com/open-mmlab/mmsegmentation/pull/1002)) **Bug Fixes** - Fix typo in usage example ([#1003](https://github.com/open-mmlab/mmsegmentation/pull/1003)) - Add contiguous after permutation in ViT ([#992](https://github.com/open-mmlab/mmsegmentation/pull/992)) - Fix the invalid link ([#985](https://github.com/open-mmlab/mmsegmentation/pull/985)) - Fix bug in CI with python 3.9 ([#994](https://github.com/open-mmlab/mmsegmentation/pull/994)) - Fix bug when loading class name form file in custom dataset ([#923](https://github.com/open-mmlab/mmsegmentation/pull/923)) **Contributors** - @ShoupingShan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/923 - @RockeyCoss made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/954 - @HarborYuan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/992 - @lkm2835 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1003 - @gszh made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/428 - @VVsssssk - @MengzhangLI - @Junjun2016 ### V0.18 (10/07/2021) **Highlights** - Support three real-time segmentation models (ICNet [#884](https://github.com/open-mmlab/mmsegmentation/pull/884), BiSeNetV1 [#851](https://github.com/open-mmlab/mmsegmentation/pull/851), and BiSeNetV2 [#804](https://github.com/open-mmlab/mmsegmentation/pull/804)) - Support one efficient segmentation model (FastFCN [#885](https://github.com/open-mmlab/mmsegmentation/pull/885)) - Support one efficient non-local/self-attention based segmentation model (ISANet [#70](https://github.com/open-mmlab/mmsegmentation/pull/70)) - Support COCO-Stuff 10k and 164k datasets ([#625](https://github.com/open-mmlab/mmsegmentation/pull/625)) - Support evaluate concated dataset separately ([#833](https://github.com/open-mmlab/mmsegmentation/pull/833)) - Support loading GT for evaluation from multi-file backend ([#867](https://github.com/open-mmlab/mmsegmentation/pull/867)) **New Features** - Support three real-time segmentation models (ICNet [#884](https://github.com/open-mmlab/mmsegmentation/pull/884), BiSeNetV1 [#851](https://github.com/open-mmlab/mmsegmentation/pull/851), and BiSeNetV2 [#804](https://github.com/open-mmlab/mmsegmentation/pull/804)) - Support one efficient segmentation model (FastFCN [#885](https://github.com/open-mmlab/mmsegmentation/pull/885)) - Support one efficient non-local/self-attention based segmentation model (ISANet [#70](https://github.com/open-mmlab/mmsegmentation/pull/70)) - Support COCO-Stuff 10k and 164k datasets ([#625](https://github.com/open-mmlab/mmsegmentation/pull/625)) - Support evaluate concated dataset separately ([#833](https://github.com/open-mmlab/mmsegmentation/pull/833)) **Improvements** - Support loading GT for evaluation from multi-file backend ([#867](https://github.com/open-mmlab/mmsegmentation/pull/867)) - Auto-convert SyncBN to BN when training on DP automatly([#772](https://github.com/open-mmlab/mmsegmentation/pull/772)) - Refactor Swin-Transformer ([#800](https://github.com/open-mmlab/mmsegmentation/pull/800)) **Bug Fixes** - Update mmcv installation in dockerfile ([#860](https://github.com/open-mmlab/mmsegmentation/pull/860)) - Fix number of iteration bug when resuming checkpoint in distributed train ([#866](https://github.com/open-mmlab/mmsegmentation/pull/866)) - Fix parsing parse in val_step ([#906](https://github.com/open-mmlab/mmsegmentation/pull/906)) ### V0.17 (09/01/2021) **Highlights** - Support SegFormer - Support DPT - Support Dark Zurich and Nighttime Driving datasets - Support progressive evaluation **New Features** - Support SegFormer ([#599](https://github.com/open-mmlab/mmsegmentation/pull/599)) - Support DPT ([#605](https://github.com/open-mmlab/mmsegmentation/pull/605)) - Support Dark Zurich and Nighttime Driving datasets ([#815](https://github.com/open-mmlab/mmsegmentation/pull/815)) - Support progressive evaluation ([#709](https://github.com/open-mmlab/mmsegmentation/pull/709)) **Improvements** - Add multiscale_output interface and unittests for HRNet ([#830](https://github.com/open-mmlab/mmsegmentation/pull/830)) - Support inherit cityscapes dataset ([#750](https://github.com/open-mmlab/mmsegmentation/pull/750)) - Fix some typos in README.md ([#824](https://github.com/open-mmlab/mmsegmentation/pull/824)) - Delete convert function and add instruction to ViT/Swin README.md ([#791](https://github.com/open-mmlab/mmsegmentation/pull/791)) - Add vit/swin/mit convert weight scripts ([#783](https://github.com/open-mmlab/mmsegmentation/pull/783)) - Add copyright files ([#796](https://github.com/open-mmlab/mmsegmentation/pull/796)) **Bug Fixes** - Fix invalid checkpoint link in inference_demo.ipynb ([#814](https://github.com/open-mmlab/mmsegmentation/pull/814)) - Ensure that items in dataset have the same order across multi machine ([#780](https://github.com/open-mmlab/mmsegmentation/pull/780)) - Fix the log error ([#766](https://github.com/open-mmlab/mmsegmentation/pull/766)) ### V0.16 (08/04/2021) **Highlights** - Support PyTorch 1.9 - Support SegFormer backbone MiT - Support md2yml pre-commit hook - Support frozen stage for HRNet **New Features** - Support SegFormer backbone MiT ([#594](https://github.com/open-mmlab/mmsegmentation/pull/594)) - Support md2yml pre-commit hook ([#732](https://github.com/open-mmlab/mmsegmentation/pull/732)) - Support mim ([#717](https://github.com/open-mmlab/mmsegmentation/pull/717)) - Add mmseg2torchserve tool ([#552](https://github.com/open-mmlab/mmsegmentation/pull/552)) **Improvements** - Support hrnet frozen stage ([#743](https://github.com/open-mmlab/mmsegmentation/pull/743)) - Add template of reimplementation questions ([#741](https://github.com/open-mmlab/mmsegmentation/pull/741)) - Output pdf and epub formats for readthedocs ([#742](https://github.com/open-mmlab/mmsegmentation/pull/742)) - Refine the docstring of ResNet ([#723](https://github.com/open-mmlab/mmsegmentation/pull/723)) - Replace interpolate with resize ([#731](https://github.com/open-mmlab/mmsegmentation/pull/731)) - Update resource limit ([#700](https://github.com/open-mmlab/mmsegmentation/pull/700)) - Update config.md ([#678](https://github.com/open-mmlab/mmsegmentation/pull/678)) **Bug Fixes** - Fix ATTENTION registry ([#729](https://github.com/open-mmlab/mmsegmentation/pull/729)) - Fix analyze log script ([#716](https://github.com/open-mmlab/mmsegmentation/pull/716)) - Fix doc api display ([#725](https://github.com/open-mmlab/mmsegmentation/pull/725)) - Fix patch_embed and pos_embed mismatch error ([#685](https://github.com/open-mmlab/mmsegmentation/pull/685)) - Fix efficient test for multi-node ([#707](https://github.com/open-mmlab/mmsegmentation/pull/707)) - Fix init_cfg in resnet backbone ([#697](https://github.com/open-mmlab/mmsegmentation/pull/697)) - Fix efficient test bug ([#702](https://github.com/open-mmlab/mmsegmentation/pull/702)) - Fix url error in config docs ([#680](https://github.com/open-mmlab/mmsegmentation/pull/680)) - Fix mmcv installation ([#676](https://github.com/open-mmlab/mmsegmentation/pull/676)) - Fix torch version ([#670](https://github.com/open-mmlab/mmsegmentation/pull/670)) **Contributors** @sshuair @xiexinch @Junjun2016 @mmeendez8 @xvjiarui @sennnnn @puhsu @BIGWangYuDong @keke1u @daavoo ### V0.15 (07/04/2021) **Highlights** - Support ViT, SETR, and Swin-Transformer - Add Chinese documentation - Unified parameter initialization **Bug Fixes** - Fix typo and links ([#608](https://github.com/open-mmlab/mmsegmentation/pull/608)) - Fix Dockerfile ([#607](https://github.com/open-mmlab/mmsegmentation/pull/607)) - Fix ViT init ([#609](https://github.com/open-mmlab/mmsegmentation/pull/609)) - Fix mmcv version compatible table ([#658](https://github.com/open-mmlab/mmsegmentation/pull/658)) - Fix model links of DMNEt ([#660](https://github.com/open-mmlab/mmsegmentation/pull/660)) **New Features** - Support loading DeiT weights ([#538](https://github.com/open-mmlab/mmsegmentation/pull/538)) - Support SETR ([#531](https://github.com/open-mmlab/mmsegmentation/pull/531), [#635](https://github.com/open-mmlab/mmsegmentation/pull/635)) - Add config and models for ViT backbone with UperHead ([#520](https://github.com/open-mmlab/mmsegmentation/pull/531), [#635](https://github.com/open-mmlab/mmsegmentation/pull/520)) - Support Swin-Transformer ([#511](https://github.com/open-mmlab/mmsegmentation/pull/511)) - Add higher accuracy FastSCNN ([#606](https://github.com/open-mmlab/mmsegmentation/pull/606)) - Add Chinese documentation ([#666](https://github.com/open-mmlab/mmsegmentation/pull/666)) **Improvements** - Unified parameter initialization ([#567](https://github.com/open-mmlab/mmsegmentation/pull/567)) - Separate CUDA and CPU in github action CI ([#602](https://github.com/open-mmlab/mmsegmentation/pull/602)) - Support persistent dataloader worker ([#646](https://github.com/open-mmlab/mmsegmentation/pull/646)) - Update meta file fields ([#661](https://github.com/open-mmlab/mmsegmentation/pull/661), [#664](https://github.com/open-mmlab/mmsegmentation/pull/664)) ### V0.14 (06/02/2021) **Highlights** - Support ONNX to TensorRT - Support MIM **Bug Fixes** - Fix ONNX to TensorRT verify ([#547](https://github.com/open-mmlab/mmsegmentation/pull/547)) - Fix save best for EvalHook ([#575](https://github.com/open-mmlab/mmsegmentation/pull/575)) **New Features** - Support loading DeiT weights ([#538](https://github.com/open-mmlab/mmsegmentation/pull/538)) - Support ONNX to TensorRT ([#542](https://github.com/open-mmlab/mmsegmentation/pull/542)) - Support output results for ADE20k ([#544](https://github.com/open-mmlab/mmsegmentation/pull/544)) - Support MIM ([#549](https://github.com/open-mmlab/mmsegmentation/pull/549)) **Improvements** - Add option for ViT output shape ([#530](https://github.com/open-mmlab/mmsegmentation/pull/530)) - Infer batch size using len(result) ([#532](https://github.com/open-mmlab/mmsegmentation/pull/532)) - Add compatible table between MMSeg and MMCV ([#558](https://github.com/open-mmlab/mmsegmentation/pull/558)) ### V0.13 (05/05/2021) **Highlights** - Support Pascal Context Class-59 dataset. - Support Visual Transformer Backbone. - Support mFscore metric. **Bug Fixes** - Fixed Colaboratory tutorial ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451)) - Fixed mIoU calculation range ([#471](https://github.com/open-mmlab/mmsegmentation/pull/471)) - Fixed sem_fpn, unet README.md ([#492](https://github.com/open-mmlab/mmsegmentation/pull/492)) - Fixed `num_classes` in FCN for Pascal Context 60-class dataset ([#488](https://github.com/open-mmlab/mmsegmentation/pull/488)) - Fixed FP16 inference ([#497](https://github.com/open-mmlab/mmsegmentation/pull/497)) **New Features** - Support dynamic export and visualize to pytorch2onnx ([#463](https://github.com/open-mmlab/mmsegmentation/pull/463)) - Support export to torchscript ([#469](https://github.com/open-mmlab/mmsegmentation/pull/469), [#499](https://github.com/open-mmlab/mmsegmentation/pull/499)) - Support Pascal Context Class-59 dataset ([#459](https://github.com/open-mmlab/mmsegmentation/pull/459)) - Support Visual Transformer backbone ([#465](https://github.com/open-mmlab/mmsegmentation/pull/465)) - Support UpSample Neck ([#512](https://github.com/open-mmlab/mmsegmentation/pull/512)) - Support mFscore metric ([#509](https://github.com/open-mmlab/mmsegmentation/pull/509)) **Improvements** - Add more CI for PyTorch ([#460](https://github.com/open-mmlab/mmsegmentation/pull/460)) - Add print model graph args for tools/print_config.py ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451)) - Add cfg links in modelzoo README.md ([#468](https://github.com/open-mmlab/mmsegmentation/pull/469)) - Add BaseSegmentor import to segmentors/__init__.py ([#495](https://github.com/open-mmlab/mmsegmentation/pull/495)) - Add MMOCR, MMGeneration links ([#501](https://github.com/open-mmlab/mmsegmentation/pull/501), [#506](https://github.com/open-mmlab/mmsegmentation/pull/506)) - Add Chinese QR code ([#506](https://github.com/open-mmlab/mmsegmentation/pull/506)) - Use MMCV MODEL_REGISTRY ([#515](https://github.com/open-mmlab/mmsegmentation/pull/515)) - Add ONNX testing tools ([#498](https://github.com/open-mmlab/mmsegmentation/pull/498)) - Replace data_dict calling 'img' key to support MMDet3D ([#514](https://github.com/open-mmlab/mmsegmentation/pull/514)) - Support reading class_weight from file in loss function ([#513](https://github.com/open-mmlab/mmsegmentation/pull/513)) - Make tags as comment ([#505](https://github.com/open-mmlab/mmsegmentation/pull/505)) - Use MMCV EvalHook ([#438](https://github.com/open-mmlab/mmsegmentation/pull/438)) ### V0.12 (04/03/2021) **Highlights** - Support FCN-Dilate 6 model. - Support Dice Loss. **Bug Fixes** - Fixed PhotoMetricDistortion Doc ([#388](https://github.com/open-mmlab/mmsegmentation/pull/388)) - Fixed install scripts ([#399](https://github.com/open-mmlab/mmsegmentation/pull/399)) - Fixed Dice Loss multi-class ([#417](https://github.com/open-mmlab/mmsegmentation/pull/417)) **New Features** - Support Dice Loss ([#396](https://github.com/open-mmlab/mmsegmentation/pull/396)) - Add plot logs tool ([#426](https://github.com/open-mmlab/mmsegmentation/pull/426)) - Add opacity option to show_result ([#425](https://github.com/open-mmlab/mmsegmentation/pull/425)) - Speed up mIoU metric ([#430](https://github.com/open-mmlab/mmsegmentation/pull/430)) **Improvements** - Refactor unittest file structure ([#440](https://github.com/open-mmlab/mmsegmentation/pull/440)) - Fix typos in the repo ([#449](https://github.com/open-mmlab/mmsegmentation/pull/449)) - Include class-level metrics in the log ([#445](https://github.com/open-mmlab/mmsegmentation/pull/445)) ### V0.11 (02/02/2021) **Highlights** - Support memory efficient test, add more UNet models. **Bug Fixes** - Fixed TTA resize scale ([#334](https://github.com/open-mmlab/mmsegmentation/pull/334)) - Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307)) - Fixed ADE20k test ([#359](https://github.com/open-mmlab/mmsegmentation/pull/359)) **New Features** - Support memory efficient test ([#330](https://github.com/open-mmlab/mmsegmentation/pull/330)) - Add more UNet benchmarks ([#324](https://github.com/open-mmlab/mmsegmentation/pull/324)) - Support Lovasz Loss ([#351](https://github.com/open-mmlab/mmsegmentation/pull/351)) **Improvements** - Move train_cfg/test_cfg inside model ([#341](https://github.com/open-mmlab/mmsegmentation/pull/341)) ### V0.10 (01/01/2021) **Highlights** - Support MobileNetV3, DMNet, APCNet. Add models of ResNet18V1b, ResNet18V1c, ResNet50V1b. **Bug Fixes** - Fixed CPU TTA ([#276](https://github.com/open-mmlab/mmsegmentation/pull/276)) - Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307)) **New Features** - Add ResNet18V1b, ResNet18V1c, ResNet50V1b, ResNet101V1b models ([#316](https://github.com/open-mmlab/mmsegmentation/pull/316)) - Support MobileNetV3 ([#268](https://github.com/open-mmlab/mmsegmentation/pull/268)) - Add 4 retinal vessel segmentation benchmark ([#315](https://github.com/open-mmlab/mmsegmentation/pull/315)) - Support DMNet ([#313](https://github.com/open-mmlab/mmsegmentation/pull/313)) - Support APCNet ([#299](https://github.com/open-mmlab/mmsegmentation/pull/299)) **Improvements** - Refactor Documentation page ([#311](https://github.com/open-mmlab/mmsegmentation/pull/311)) - Support resize data augmentation according to original image size ([#291](https://github.com/open-mmlab/mmsegmentation/pull/291)) ### V0.9 (30/11/2020) **Highlights** - Support 4 medical dataset, UNet and CGNet. **New Features** - Support RandomRotate transform ([#215](https://github.com/open-mmlab/mmsegmentation/pull/215), [#260](https://github.com/open-mmlab/mmsegmentation/pull/260)) - Support RGB2Gray transform ([#227](https://github.com/open-mmlab/mmsegmentation/pull/227)) - Support Rerange transform ([#228](https://github.com/open-mmlab/mmsegmentation/pull/228)) - Support ignore_index for BCE loss ([#210](https://github.com/open-mmlab/mmsegmentation/pull/210)) - Add modelzoo statistics ([#263](https://github.com/open-mmlab/mmsegmentation/pull/263)) - Support Dice evaluation metric ([#225](https://github.com/open-mmlab/mmsegmentation/pull/225)) - Support Adjust Gamma transform ([#232](https://github.com/open-mmlab/mmsegmentation/pull/232)) - Support CLAHE transform ([#229](https://github.com/open-mmlab/mmsegmentation/pull/229)) **Bug Fixes** - Fixed detail API link ([#267](https://github.com/open-mmlab/mmsegmentation/pull/267)) ### V0.8 (03/11/2020) **Highlights** - Support 4 medical dataset, UNet and CGNet. **New Features** - Support customize runner ([#118](https://github.com/open-mmlab/mmsegmentation/pull/118)) - Support UNet ([#161](https://github.com/open-mmlab/mmsegmentation/pull/162)) - Support CHASE_DB1, DRIVE, STARE, HRD ([#203](https://github.com/open-mmlab/mmsegmentation/pull/203)) - Support CGNet ([#223](https://github.com/open-mmlab/mmsegmentation/pull/223)) ### V0.7 (07/10/2020) **Highlights** - Support Pascal Context dataset and customizing class dataset. **Bug Fixes** - Fixed CPU inference ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153)) **New Features** - Add DeepLab OS16 models ([#154](https://github.com/open-mmlab/mmsegmentation/pull/154)) - Support Pascal Context dataset ([#133](https://github.com/open-mmlab/mmsegmentation/pull/133)) - Support customizing dataset classes ([#71](https://github.com/open-mmlab/mmsegmentation/pull/71)) - Support customizing dataset palette ([#157](https://github.com/open-mmlab/mmsegmentation/pull/157)) **Improvements** - Support 4D tensor output in ONNX ([#150](https://github.com/open-mmlab/mmsegmentation/pull/150)) - Remove redundancies in ONNX export ([#160](https://github.com/open-mmlab/mmsegmentation/pull/160)) - Migrate to MMCV DepthwiseSeparableConv ([#158](https://github.com/open-mmlab/mmsegmentation/pull/158)) - Migrate to MMCV collect_env ([#137](https://github.com/open-mmlab/mmsegmentation/pull/137)) - Use img_prefix and seg_prefix for loading ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153)) ### V0.6 (10/09/2020) **Highlights** - Support new methods i.e. MobileNetV2, EMANet, DNL, PointRend, Semantic FPN, Fast-SCNN, ResNeSt. **Bug Fixes** - Fixed sliding inference ONNX export ([#90](https://github.com/open-mmlab/mmsegmentation/pull/90)) **New Features** - Support MobileNet v2 ([#86](https://github.com/open-mmlab/mmsegmentation/pull/86)) - Support EMANet ([#34](https://github.com/open-mmlab/mmsegmentation/pull/34)) - Support DNL ([#37](https://github.com/open-mmlab/mmsegmentation/pull/37)) - Support PointRend ([#109](https://github.com/open-mmlab/mmsegmentation/pull/109)) - Support Semantic FPN ([#94](https://github.com/open-mmlab/mmsegmentation/pull/94)) - Support Fast-SCNN ([#58](https://github.com/open-mmlab/mmsegmentation/pull/58)) - Support ResNeSt backbone ([#47](https://github.com/open-mmlab/mmsegmentation/pull/47)) - Support ONNX export (experimental) ([#12](https://github.com/open-mmlab/mmsegmentation/pull/12)) **Improvements** - Support Upsample in ONNX ([#100](https://github.com/open-mmlab/mmsegmentation/pull/100)) - Support Windows install (experimental) ([#75](https://github.com/open-mmlab/mmsegmentation/pull/75)) - Add more OCRNet results ([#20](https://github.com/open-mmlab/mmsegmentation/pull/20)) - Add PyTorch 1.6 CI ([#64](https://github.com/open-mmlab/mmsegmentation/pull/64)) - Get version and githash automatically ([#55](https://github.com/open-mmlab/mmsegmentation/pull/55)) ### v0.5.1 (11/08/2020) **Highlights** - Support FP16 and more generalized OHEM **Bug Fixes** - Fixed Pascal VOC conversion script (#19) - Fixed OHEM weight assign bug (#54) - Fixed palette type when palette is not given (#27) **New Features** - Support FP16 (#21) - Generalized OHEM (#54) **Improvements** - Add load-from flag (#33) - Fixed training tricks doc about different learning rates of model (#26)