_base_ = [ '../_base_/models/upernet_vit-b16_ln_mln.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) data_preprocessor = dict(size=crop_size) model = dict( data_preprocessor=data_preprocessor, pretrained='pretrain/vit_base_patch16_224.pth', backbone=dict(drop_path_rate=0.1, final_norm=True), decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150)) # AdamW optimizer, no weight decay for position embedding & layer norm # in backbone optim_wrapper = dict( _delete_=True, type='OptimWrapper', optimizer=dict( type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01), paramwise_cfg=dict( custom_keys={ 'pos_embed': dict(decay_mult=0.), 'cls_token': dict(decay_mult=0.), 'norm': dict(decay_mult=0.) })) param_scheduler = [ dict( type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500), dict( type='PolyLR', eta_min=0.0, power=1.0, begin=1500, end=160000, by_epoch=False, ) ] # By default, models are trained on 8 GPUs with 2 images per GPU train_dataloader = dict(batch_size=2) val_dataloader = dict(batch_size=1) test_dataloader = val_dataloader