diff --git a/mmseg/models/backbones/resnet.py b/mmseg/models/backbones/resnet.py index 0ff1fe9de97a60df345d61c5bd777f753b019a38..f7238f02f65543d61ec937f28f164450253dfca2 100644 --- a/mmseg/models/backbones/resnet.py +++ b/mmseg/models/backbones/resnet.py @@ -312,25 +312,38 @@ class ResNet(BaseModule): Args: depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. - in_channels (int): Number of input image channels. Default" 3. + in_channels (int): Number of input image channels. Default: 3. stem_channels (int): Number of stem channels. Default: 64. base_channels (int): Number of base channels of res layer. Default: 64. - num_stages (int): Resnet stages, normally 4. + num_stages (int): Resnet stages, normally 4. Default: 4. strides (Sequence[int]): Strides of the first block of each stage. + Default: (1, 2, 2, 2). dilations (Sequence[int]): Dilation of each stage. + Default: (1, 1, 1, 1). out_indices (Sequence[int]): Output from which stages. + Default: (0, 1, 2, 3). style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two layer is the 3x3 conv layer, otherwise the stride-two layer is - the first 1x1 conv layer. - deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv + the first 1x1 conv layer. Default: 'pytorch'. + deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv. + Default: False. avg_down (bool): Use AvgPool instead of stride conv when - downsampling in the bottleneck. + downsampling in the bottleneck. Default: False. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). - -1 means not freezing any parameters. + -1 means not freezing any parameters. Default: -1. + conv_cfg (dict | None): Dictionary to construct and config conv layer. + When conv_cfg is None, cfg will be set to dict(type='Conv2d'). + Default: None. norm_cfg (dict): Dictionary to construct and config norm layer. + Default: dict(type='BN', requires_grad=True). norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm - and its variants only. + and its variants only. Default: False. + dcn (dict | None): Dictionary to construct and config DCN conv layer. + When dcn is not None, conv_cfg must be None. Default: None. + stage_with_dcn (Sequence[bool]): Whether to set DCN conv for each + stage. The length of stage_with_dcn is equal to num_stages. + Default: (False, False, False, False). plugins (list[dict]): List of plugins for stages, each dict contains: - cfg (dict, required): Cfg dict to build plugin. @@ -339,18 +352,19 @@ class ResNet(BaseModule): options: 'after_conv1', 'after_conv2', 'after_conv3'. - stages (tuple[bool], optional): Stages to apply plugin, length - should be same as 'num_stages' + should be same as 'num_stages'. + Default: None. multi_grid (Sequence[int]|None): Multi grid dilation rates of last - stage. Default: None + stage. Default: None. contract_dilation (bool): Whether contract first dilation of each layer - Default: False + Default: False. with_cp (bool): Use checkpoint or not. Using checkpoint will save some - memory while slowing down the training speed. + memory while slowing down the training speed. Default: False. zero_init_residual (bool): Whether to use zero init for last norm layer - in resblocks to let them behave as identity. - pretrained (str, optional): model pretrained path. Default: None + in resblocks to let them behave as identity. Default: True. + pretrained (str, optional): model pretrained path. Default: None. init_cfg (dict or list[dict], optional): Initialization config dict. - Default: None + Default: None. Example: >>> from mmseg.models import ResNet