From 126093adc6136b7bfb7ba38c96f0eb7899abd7d1 Mon Sep 17 00:00:00 2001 From: Hussein Alihussein <hussein@irmb.tu-bs.de> Date: Mon, 27 Feb 2023 19:06:25 +0100 Subject: [PATCH] Add non reflecting in and outflow BCs --- .../NonReflectingInflowBCAlgorithm.cpp | 341 ++++++++++++++++++ .../NonReflectingInflowBCAlgorithm.h | 50 +++ ...ectingOutflowBCAlgorithmWithRelaxation.cpp | 233 ++++++++++++ ...flectingOutflowBCAlgorithmWithRelaxation.h | 50 +++ 4 files changed, 674 insertions(+) create mode 100644 src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingInflowBCAlgorithm.cpp create mode 100644 src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingInflowBCAlgorithm.h create mode 100644 src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingOutflowBCAlgorithmWithRelaxation.cpp create mode 100644 src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingOutflowBCAlgorithmWithRelaxation.h diff --git a/src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingInflowBCAlgorithm.cpp b/src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingInflowBCAlgorithm.cpp new file mode 100644 index 000000000..078e8bfb4 --- /dev/null +++ b/src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingInflowBCAlgorithm.cpp @@ -0,0 +1,341 @@ +//======================================================================================= +// ____ ____ __ ______ __________ __ __ __ __ +// \ \ | | | | | _ \ |___ ___| | | | | / \ | | +// \ \ | | | | | |_) | | | | | | | / \ | | +// \ \ | | | | | _ / | | | | | | / /\ \ | | +// \ \ | | | | | | \ \ | | | \__/ | / ____ \ | |____ +// \ \ | | |__| |__| \__\ |__| \________/ /__/ \__\ |_______| +// \ \ | | ________________________________________________________________ +// \ \ | | | ______________________________________________________________| +// \ \| | | | __ __ __ __ ______ _______ +// \ | | |_____ | | | | | | | | | _ \ / _____) +// \ | | _____| | | | | | | | | | | \ \ \_______ +// \ | | | | |_____ | \_/ | | | | |_/ / _____ | +// \ _____| |__| |________| \_______/ |__| |______/ (_______/ +// +// This file is part of VirtualFluids. VirtualFluids is free software: you can +// redistribute it and/or modify it under the terms of the GNU General Public +// License as published by the Free Software Foundation, either version 3 of +// the License, or (at your option) any later version. +// +// VirtualFluids is distributed in the hope that it will be useful, but WITHOUT +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +// for more details. +// +// You should have received a copy of the GNU General Public License along +// with VirtualFluids (see COPYING.txt). If not, see <http://www.gnu.org/licenses/>. +// +//! \file NonReflectingInflowBCAlgorithm.cpp +//! \ingroup BoundarConditions +//! \author Hussein Alihussein +//======================================================================================= +#include "NonReflectingInflowBCAlgorithm.h" + +#include "BoundaryConditions.h" +#include "D3Q27System.h" +#include "DistributionArray3D.h" + +NonReflectingInflowBCAlgorithm::NonReflectingInflowBCAlgorithm() +{ + BCAlgorithm::type = BCAlgorithm::NonReflectingInflowBCAlgorithm; + BCAlgorithm::preCollision = true; +} +////////////////////////////////////////////////////////////////////////// +NonReflectingInflowBCAlgorithm::~NonReflectingInflowBCAlgorithm() = default; +////////////////////////////////////////////////////////////////////////// +SPtr<BCAlgorithm> NonReflectingInflowBCAlgorithm::clone() +{ + SPtr<BCAlgorithm> bc(new NonReflectingInflowBCAlgorithm()); + return bc; +} +////////////////////////////////////////////////////////////////////////// +void NonReflectingInflowBCAlgorithm::addDistributions(SPtr<DistributionArray3D> distributions) +{ + this->distributions = distributions; +} +////////////////////////////////////////////////////////////////////////// +void NonReflectingInflowBCAlgorithm::applyBC() +{ + using namespace vf::lbm::dir; + using namespace D3Q27System; + // using namespace UbMath; + using namespace vf::lbm::constant; + + LBMReal f[ENDF + 1]; + LBMReal ftemp[ENDF + 1]; + + int nx1 = x1; + int nx2 = x2; + int nx3 = x3; + int direction = -1; + + // flag points in direction of fluid + if (bcPtr->hasDensityBoundaryFlag(DIR_P00)) { + nx1 += 1; + direction = DIR_P00; + } else if (bcPtr->hasDensityBoundaryFlag(DIR_M00)) { + nx1 -= 1; + direction = DIR_M00; + } else if (bcPtr->hasDensityBoundaryFlag(DIR_0P0)) { + nx2 += 1; + direction = DIR_0P0; + } else if (bcPtr->hasDensityBoundaryFlag(DIR_0M0)) { + nx2 -= 1; + direction = DIR_0M0; + } else if (bcPtr->hasDensityBoundaryFlag(DIR_00P)) { + nx3 += 1; + direction = DIR_00P; + } else if (bcPtr->hasDensityBoundaryFlag(DIR_00M)) { + nx3 -= 1; + direction = DIR_00M; + } else + UB_THROW(UbException(UB_EXARGS, "Danger...no orthogonal BC-Flag on density boundary...")); + + distributions->getDistribution(f, x1, x2, x3); + distributions->getDistribution(ftemp, nx1, nx2, nx3); + + LBMReal rho, vx1, vx2, vx3; + calcMacrosFct(f, rho, vx1, vx2, vx3); + //vx1 = 0.; + LBMReal BCVeloWeight = 0.5; + // LBMReal velocity = 0.004814077025232405; + // LBMReal velocity = 0.00057735; + //LBMReal velocity = 0.04; + // LBMReal velocity = 0.01; + // LBMReal velocity = 1./112.; + // LBMReal velocity = 1./126.; + LBMReal velocity = 1./200.; + // LBMReal velocity = 0.005; + //LBMReal delf =(-velocity+vx1)*0.5 ; + LBMReal delf; + + switch (direction) { + case DIR_P00: + delf = (-velocity + vx1) * BCVeloWeight; + // delf = (-velocity ) * BCVeloWeight; + f[DIR_P00] = ftemp[DIR_P00] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_P00] - delf* WEIGTH[DIR_P00]; + f[DIR_PP0] = ftemp[DIR_PP0] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PP0]- delf* WEIGTH[DIR_PP0]; + f[DIR_PM0] = ftemp[DIR_PM0] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PM0]- delf* WEIGTH[DIR_PM0]; + f[DIR_P0P] = ftemp[DIR_P0P] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_P0P]- delf* WEIGTH[DIR_P0P]; + f[DIR_P0M] = ftemp[DIR_P0M] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_P0M]- delf* WEIGTH[DIR_P0M]; + f[DIR_PPP] = ftemp[DIR_PPP] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PPP]- delf* WEIGTH[DIR_PPP]; + f[DIR_PMP] = ftemp[DIR_PMP] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PMP]- delf* WEIGTH[DIR_PMP]; + f[DIR_PPM] = ftemp[DIR_PPM] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PPM]- delf* WEIGTH[DIR_PPM]; + f[DIR_PMM] = ftemp[DIR_PMM] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PMM]- delf* WEIGTH[DIR_PMM]; + //f[DIR_P00] = (ftemp[DIR_P00] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_P00]) * + // (1 - BCVeloWeight) + + // (ftemp[DIR_M00] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_M00] + + // velocity*(6)*WEIGTH[DIR_P00]/* bcPtr->getBoundaryVelocity(INVDIR[DIR_M00])*/) * + // (BCVeloWeight) ; + //f[DIR_PP0] = (ftemp[DIR_PP0] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PP0]) * + // (1 - BCVeloWeight) + + // (ftemp[DIR_MM0] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_MM0] + + // velocity * (6) * WEIGTH[DIR_PP0] /*bcPtr->getBoundaryVelocity(INVDIR[DIR_MM0])*/) * + // (BCVeloWeight); + //f[DIR_PM0] = (ftemp[DIR_PM0] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PM0]) * + // (1 - BCVeloWeight) + + // (ftemp[DIR_MP0] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_MP0] + + // velocity*(6)*WEIGTH[DIR_PP0]/* bcPtr->getBoundaryVelocity(INVDIR[DIR_MP0])*/) * + // (BCVeloWeight); + //f[DIR_P0P] = (ftemp[DIR_P0P] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_P0P]) * + // (1 - BCVeloWeight) + + // (ftemp[DIR_M0M] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_M0M] + + // velocity*(6)*WEIGTH[DIR_P0P]/* bcPtr->getBoundaryVelocity(INVDIR[DIR_M0M])*/) * + // (BCVeloWeight); + //f[DIR_P0M] = (ftemp[DIR_P0M] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_P0M])* + // (1 - BCVeloWeight) + + // (ftemp[DIR_M0P] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_M0P] + + // velocity*(6)*WEIGTH[DIR_P0M]/* bcPtr->getBoundaryVelocity(INVDIR[DIR_M0P])*/) * + // (BCVeloWeight); + //f[DIR_PPP] = (ftemp[DIR_PPP] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PPP])* + // (1 - BCVeloWeight) + + // (ftemp[DIR_MMM] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_MMM] + + // velocity * (6) * WEIGTH[DIR_PPP] /* bcPtr->getBoundaryVelocity(INVDIR[DIR_MMM])*/) * + // (BCVeloWeight); + //f[DIR_PMP] = (ftemp[DIR_PMP] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PMP]) * + // (1 - BCVeloWeight) + + // (ftemp[DIR_MPM] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_MPM] + + // velocity * (6) * WEIGTH[DIR_PPP] /*bcPtr->getBoundaryVelocity(INVDIR[DIR_MPM])*/) * + // (BCVeloWeight); + //f[DIR_PPM] = (ftemp[DIR_PPM] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PPM]) * + // (1 - BCVeloWeight) + + // (ftemp[DIR_MMP] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_MMP] + + // velocity * (6) * WEIGTH[DIR_PPP] /* bcPtr->getBoundaryVelocity(INVDIR[DIR_MMP])*/) * + // (BCVeloWeight); + //f[DIR_PMM] = (ftemp[DIR_PMM] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PMM]) * + // (1 - BCVeloWeight) + + // (ftemp[DIR_MPP] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_MPP] + + // velocity * (6) * WEIGTH[DIR_PPP] /* bcPtr->getBoundaryVelocity(INVDIR[DIR_MPP])*/) * + // (BCVeloWeight); + + distributions->setDistributionInvForDirection(f[DIR_P00], x1 + DX1[DIR_M00], x2 + DX2[DIR_M00], x3 + DX3[DIR_M00], DIR_M00); + distributions->setDistributionInvForDirection(f[DIR_PP0], x1 + DX1[DIR_MM0], x2 + DX2[DIR_MM0], x3 + DX3[DIR_MM0], DIR_MM0); + distributions->setDistributionInvForDirection(f[DIR_PM0], x1 + DX1[DIR_MP0], x2 + DX2[DIR_MP0], x3 + DX3[DIR_MP0], DIR_MP0); + distributions->setDistributionInvForDirection(f[DIR_P0P], x1 + DX1[DIR_M0M], x2 + DX2[DIR_M0M], x3 + DX3[DIR_M0M], DIR_M0M); + distributions->setDistributionInvForDirection(f[DIR_P0M], x1 + DX1[DIR_M0P], x2 + DX2[DIR_M0P], x3 + DX3[DIR_M0P], DIR_M0P); + distributions->setDistributionInvForDirection(f[DIR_PPP], x1 + DX1[DIR_MMM], x2 + DX2[DIR_MMM], x3 + DX3[DIR_MMM], DIR_MMM); + distributions->setDistributionInvForDirection(f[DIR_PMP], x1 + DX1[DIR_MPM], x2 + DX2[DIR_MPM], x3 + DX3[DIR_MPM], DIR_MPM); + distributions->setDistributionInvForDirection(f[DIR_PPM], x1 + DX1[DIR_MMP], x2 + DX2[DIR_MMP], x3 + DX3[DIR_MMP], DIR_MMP); + distributions->setDistributionInvForDirection(f[DIR_PMM], x1 + DX1[DIR_MPP], x2 + DX2[DIR_MPP], x3 + DX3[DIR_MPP], DIR_MPP); + break; + case DIR_M00: + delf = (-velocity - vx1) * BCVeloWeight; + f[DIR_M00] = ftemp[DIR_M00] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_M00] - + delf * WEIGTH[DIR_M00]; + f[DIR_MP0] = ftemp[DIR_MP0] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_MP0] - + delf * WEIGTH[DIR_MP0]; + f[DIR_MM0] = ftemp[DIR_MM0] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_MM0] - + delf * WEIGTH[DIR_MM0]; + f[DIR_M0P] = ftemp[DIR_M0P] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_M0P] - + delf * WEIGTH[DIR_M0P]; + f[DIR_M0M] = ftemp[DIR_M0M] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_M0M] - + delf * WEIGTH[DIR_M0M]; + f[DIR_MPP] = ftemp[DIR_MPP] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_MPP] - + delf * WEIGTH[DIR_MPP]; + f[DIR_MMP] = ftemp[DIR_MMP] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_MMP] - + delf * WEIGTH[DIR_MMP]; + f[DIR_MPM] = ftemp[DIR_MPM] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_MPM] - + delf * WEIGTH[DIR_MPM]; + f[DIR_MMM] = ftemp[DIR_MMM] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_MMM] - + delf * WEIGTH[DIR_MMM]; + + distributions->setDistributionInvForDirection(f[DIR_M00], x1 + DX1[DIR_P00], x2 + DX2[DIR_P00], x3 + DX3[DIR_P00], DIR_P00); + distributions->setDistributionInvForDirection(f[DIR_MP0], x1 + DX1[DIR_PM0], x2 + DX2[DIR_PM0], x3 + DX3[DIR_PM0], DIR_PM0); + distributions->setDistributionInvForDirection(f[DIR_MM0], x1 + DX1[DIR_PP0], x2 + DX2[DIR_PP0], x3 + DX3[DIR_PP0], DIR_PP0); + distributions->setDistributionInvForDirection(f[DIR_M0P], x1 + DX1[DIR_P0M], x2 + DX2[DIR_P0M], x3 + DX3[DIR_P0M], DIR_P0M); + distributions->setDistributionInvForDirection(f[DIR_M0M], x1 + DX1[DIR_P0P], x2 + DX2[DIR_P0P], x3 + DX3[DIR_P0P], DIR_P0P); + distributions->setDistributionInvForDirection(f[DIR_MPP], x1 + DX1[DIR_PMM], x2 + DX2[DIR_PMM], x3 + DX3[DIR_PMM], DIR_PMM); + distributions->setDistributionInvForDirection(f[DIR_MMP], x1 + DX1[DIR_PPM], x2 + DX2[DIR_PPM], x3 + DX3[DIR_PPM], DIR_PPM); + distributions->setDistributionInvForDirection(f[DIR_MPM], x1 + DX1[DIR_PMP], x2 + DX2[DIR_PMP], x3 + DX3[DIR_PMP], DIR_PMP); + distributions->setDistributionInvForDirection(f[DIR_MMM], x1 + DX1[DIR_PPP], x2 + DX2[DIR_PPP], x3 + DX3[DIR_PPP], DIR_PPP); + break; + case DIR_0P0: + delf = (-velocity + vx2) * BCVeloWeight; + f[DIR_0P0] = ftemp[DIR_0P0] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_0P0] - + delf * WEIGTH[DIR_0P0]; + f[DIR_PP0] = ftemp[DIR_PP0] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_PP0] - + delf * WEIGTH[DIR_PP0]; + f[DIR_MP0] = ftemp[DIR_MP0] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_MP0] - + delf * WEIGTH[DIR_MP0]; + f[DIR_0PP] = ftemp[DIR_0PP] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_0PP] - + delf * WEIGTH[DIR_0PP]; + f[DIR_0PM] = ftemp[DIR_0PM] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_0PM] - + delf * WEIGTH[DIR_0PM]; + f[DIR_PPP] = ftemp[DIR_PPP] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_PPP] - + delf * WEIGTH[DIR_PPP]; + f[DIR_MPP] = ftemp[DIR_MPP] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_MPP] - + delf * WEIGTH[DIR_MPP]; + f[DIR_PPM] = ftemp[DIR_PPM] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_PPM] - + delf * WEIGTH[DIR_PPM]; + f[DIR_MPM] = ftemp[DIR_MPM] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_MPM] - + delf * WEIGTH[DIR_MPM]; + + distributions->setDistributionInvForDirection(f[DIR_0P0], x1 + DX1[DIR_0M0], x2 + DX2[DIR_0M0], x3 + DX3[DIR_0M0], DIR_0M0); + distributions->setDistributionInvForDirection(f[DIR_PP0], x1 + DX1[DIR_MM0], x2 + DX2[DIR_MM0], x3 + DX3[DIR_MM0], DIR_MM0); + distributions->setDistributionInvForDirection(f[DIR_MP0], x1 + DX1[DIR_PM0], x2 + DX2[DIR_PM0], x3 + DX3[DIR_PM0], DIR_PM0); + distributions->setDistributionInvForDirection(f[DIR_0PP], x1 + DX1[DIR_0MM], x2 + DX2[DIR_0MM], x3 + DX3[DIR_0MM], DIR_0MM); + distributions->setDistributionInvForDirection(f[DIR_0PM], x1 + DX1[DIR_0MP], x2 + DX2[DIR_0MP], x3 + DX3[DIR_0MP], DIR_0MP); + distributions->setDistributionInvForDirection(f[DIR_PPP], x1 + DX1[DIR_MMM], x2 + DX2[DIR_MMM], x3 + DX3[DIR_MMM], DIR_MMM); + distributions->setDistributionInvForDirection(f[DIR_MPP], x1 + DX1[DIR_PMM], x2 + DX2[DIR_PMM], x3 + DX3[DIR_PMM], DIR_PMM); + distributions->setDistributionInvForDirection(f[DIR_PPM], x1 + DX1[DIR_MMP], x2 + DX2[DIR_MMP], x3 + DX3[DIR_MMP], DIR_MMP); + distributions->setDistributionInvForDirection(f[DIR_MPM], x1 + DX1[DIR_PMP], x2 + DX2[DIR_PMP], x3 + DX3[DIR_PMP], DIR_PMP); + break; + case DIR_0M0: + delf = (-velocity - vx2) * BCVeloWeight; + f[DIR_0M0] = ftemp[DIR_0M0] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_0M0] - + delf * WEIGTH[DIR_0M0]; + f[DIR_PM0] = ftemp[DIR_PM0] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_PM0] - + delf * WEIGTH[DIR_PM0]; + f[DIR_MM0] = ftemp[DIR_MM0] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_MM0] - + delf * WEIGTH[DIR_MM0]; + f[DIR_0MP] = ftemp[DIR_0MP] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_0MP] - + delf * WEIGTH[DIR_0MP]; + f[DIR_0MM] = ftemp[DIR_0MM] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_0MM] - + delf * WEIGTH[DIR_0MM]; + f[DIR_PMP] = ftemp[DIR_PMP] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_PMP] - + delf * WEIGTH[DIR_PMP]; + f[DIR_MMP] = ftemp[DIR_MMP] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_MMP] - + delf * WEIGTH[DIR_MMP]; + f[DIR_PMM] = ftemp[DIR_PMM] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_PMM] - + delf * WEIGTH[DIR_PMM]; + f[DIR_MMM] = ftemp[DIR_MMM] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_MMM] - + delf * WEIGTH[DIR_MMM]; + + distributions->setDistributionInvForDirection(f[DIR_0M0], x1 + DX1[DIR_0P0], x2 + DX2[DIR_0P0], x3 + DX3[DIR_0P0], DIR_0P0); + distributions->setDistributionInvForDirection(f[DIR_PM0], x1 + DX1[DIR_MP0], x2 + DX2[DIR_MP0], x3 + DX3[DIR_MP0], DIR_MP0); + distributions->setDistributionInvForDirection(f[DIR_MM0], x1 + DX1[DIR_PP0], x2 + DX2[DIR_PP0], x3 + DX3[DIR_PP0], DIR_PP0); + distributions->setDistributionInvForDirection(f[DIR_0MP], x1 + DX1[DIR_0PM], x2 + DX2[DIR_0PM], x3 + DX3[DIR_0PM], DIR_0PM); + distributions->setDistributionInvForDirection(f[DIR_0MM], x1 + DX1[DIR_0PP], x2 + DX2[DIR_0PP], x3 + DX3[DIR_0PP], DIR_0PP); + distributions->setDistributionInvForDirection(f[DIR_PMP], x1 + DX1[DIR_MPM], x2 + DX2[DIR_MPM], x3 + DX3[DIR_MPM], DIR_MPM); + distributions->setDistributionInvForDirection(f[DIR_MMP], x1 + DX1[DIR_PPM], x2 + DX2[DIR_PPM], x3 + DX3[DIR_PPM], DIR_PPM); + distributions->setDistributionInvForDirection(f[DIR_PMM], x1 + DX1[DIR_MPP], x2 + DX2[DIR_MPP], x3 + DX3[DIR_MPP], DIR_MPP); + distributions->setDistributionInvForDirection(f[DIR_MMM], x1 + DX1[DIR_PPP], x2 + DX2[DIR_PPP], x3 + DX3[DIR_PPP], DIR_PPP); + break; + case DIR_00P: + delf = (-velocity + vx3) * BCVeloWeight; + f[DIR_00P] = ftemp[DIR_00P] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_00P] - + delf * WEIGTH[DIR_00P]; + f[DIR_P0P] = ftemp[DIR_P0P] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_P0P] - + delf * WEIGTH[DIR_P0P]; + f[DIR_M0P] = ftemp[DIR_M0P] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_M0P] - + delf * WEIGTH[DIR_M0P]; + f[DIR_0PP] = ftemp[DIR_0PP] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_0PP] - + delf * WEIGTH[DIR_0PP]; + f[DIR_0MP] = ftemp[DIR_0MP] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_0MP] - + delf * WEIGTH[DIR_0MP]; + f[DIR_PPP] = ftemp[DIR_PPP] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_PPP] - + delf * WEIGTH[DIR_PPP]; + f[DIR_MPP] = ftemp[DIR_MPP] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_MPP] - + delf * WEIGTH[DIR_MPP]; + f[DIR_PMP] = ftemp[DIR_PMP] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_PMP] - + delf * WEIGTH[DIR_PMP]; + f[DIR_MMP] = ftemp[DIR_MMP] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_MMP] - + delf * WEIGTH[DIR_MMP]; + + distributions->setDistributionInvForDirection(f[DIR_00P], x1 + DX1[DIR_00M], x2 + DX2[DIR_00M], x3 + DX3[DIR_00M], DIR_00M); + distributions->setDistributionInvForDirection(f[DIR_P0P], x1 + DX1[DIR_M0M], x2 + DX2[DIR_M0M], x3 + DX3[DIR_M0M], DIR_M0M); + distributions->setDistributionInvForDirection(f[DIR_M0P], x1 + DX1[DIR_P0M], x2 + DX2[DIR_P0M], x3 + DX3[DIR_P0M], DIR_P0M); + distributions->setDistributionInvForDirection(f[DIR_0PP], x1 + DX1[DIR_0MM], x2 + DX2[DIR_0MM], x3 + DX3[DIR_0MM], DIR_0MM); + distributions->setDistributionInvForDirection(f[DIR_0MP], x1 + DX1[DIR_0PM], x2 + DX2[DIR_0PM], x3 + DX3[DIR_0PM], DIR_0PM); + distributions->setDistributionInvForDirection(f[DIR_PPP], x1 + DX1[DIR_MMM], x2 + DX2[DIR_MMM], x3 + DX3[DIR_MMM], DIR_MMM); + distributions->setDistributionInvForDirection(f[DIR_MPP], x1 + DX1[DIR_PMM], x2 + DX2[DIR_PMM], x3 + DX3[DIR_PMM], DIR_PMM); + distributions->setDistributionInvForDirection(f[DIR_PMP], x1 + DX1[DIR_MPM], x2 + DX2[DIR_MPM], x3 + DX3[DIR_MPM], DIR_MPM); + distributions->setDistributionInvForDirection(f[DIR_MMP], x1 + DX1[DIR_PPM], x2 + DX2[DIR_PPM], x3 + DX3[DIR_PPM], DIR_PPM); + break; + case DIR_00M: + delf = (-velocity - vx3) * BCVeloWeight; + f[DIR_00M] = ftemp[DIR_00M] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_00M] - + delf * WEIGTH[DIR_00M]; + f[DIR_P0M] = ftemp[DIR_P0M] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_P0M] - + delf * WEIGTH[DIR_P0M]; + f[DIR_M0M] = ftemp[DIR_M0M] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_M0M] - + delf * WEIGTH[DIR_M0M]; + f[DIR_0PM] = ftemp[DIR_0PM] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_0PM] - + delf * WEIGTH[DIR_0PM]; + f[DIR_0MM] = ftemp[DIR_0MM] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_0MM] - + delf * WEIGTH[DIR_0MM]; + f[DIR_PPM] = ftemp[DIR_PPM] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_PPM] - + delf * WEIGTH[DIR_PPM]; + f[DIR_MPM] = ftemp[DIR_MPM] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_MPM] - + delf * WEIGTH[DIR_MPM]; + f[DIR_PMM] = ftemp[DIR_PMM] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_PMM] - + delf * WEIGTH[DIR_PMM]; + f[DIR_MMM] = ftemp[DIR_MMM] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_MMM] - + delf * WEIGTH[DIR_MMM]; + + distributions->setDistributionInvForDirection(f[DIR_00M], x1 + DX1[DIR_00P], x2 + DX2[DIR_00P], x3 + DX3[DIR_00P], DIR_00P); + distributions->setDistributionInvForDirection(f[DIR_P0M], x1 + DX1[DIR_M0P], x2 + DX2[DIR_M0P], x3 + DX3[DIR_M0P], DIR_M0P); + distributions->setDistributionInvForDirection(f[DIR_M0M], x1 + DX1[DIR_P0P], x2 + DX2[DIR_P0P], x3 + DX3[DIR_P0P], DIR_P0P); + distributions->setDistributionInvForDirection(f[DIR_0PM], x1 + DX1[DIR_0MP], x2 + DX2[DIR_0MP], x3 + DX3[DIR_0MP], DIR_0MP); + distributions->setDistributionInvForDirection(f[DIR_0MM], x1 + DX1[DIR_0PP], x2 + DX2[DIR_0PP], x3 + DX3[DIR_0PP], DIR_0PP); + distributions->setDistributionInvForDirection(f[DIR_PPM], x1 + DX1[DIR_MMP], x2 + DX2[DIR_MMP], x3 + DX3[DIR_MMP], DIR_MMP); + distributions->setDistributionInvForDirection(f[DIR_MPM], x1 + DX1[DIR_PMP], x2 + DX2[DIR_PMP], x3 + DX3[DIR_PMP], DIR_PMP); + distributions->setDistributionInvForDirection(f[DIR_PMM], x1 + DX1[DIR_MPP], x2 + DX2[DIR_MPP], x3 + DX3[DIR_MPP], DIR_MPP); + distributions->setDistributionInvForDirection(f[DIR_MMM], x1 + DX1[DIR_PPP], x2 + DX2[DIR_PPP], x3 + DX3[DIR_PPP], DIR_PPP); + break; + default: + UB_THROW( + UbException(UB_EXARGS, "It isn't implemented non reflecting density boundary for this direction!")); + } +} diff --git a/src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingInflowBCAlgorithm.h b/src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingInflowBCAlgorithm.h new file mode 100644 index 000000000..1f3e87ce3 --- /dev/null +++ b/src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingInflowBCAlgorithm.h @@ -0,0 +1,50 @@ +//======================================================================================= +// ____ ____ __ ______ __________ __ __ __ __ +// \ \ | | | | | _ \ |___ ___| | | | | / \ | | +// \ \ | | | | | |_) | | | | | | | / \ | | +// \ \ | | | | | _ / | | | | | | / /\ \ | | +// \ \ | | | | | | \ \ | | | \__/ | / ____ \ | |____ +// \ \ | | |__| |__| \__\ |__| \________/ /__/ \__\ |_______| +// \ \ | | ________________________________________________________________ +// \ \ | | | ______________________________________________________________| +// \ \| | | | __ __ __ __ ______ _______ +// \ | | |_____ | | | | | | | | | _ \ / _____) +// \ | | _____| | | | | | | | | | | \ \ \_______ +// \ | | | | |_____ | \_/ | | | | |_/ / _____ | +// \ _____| |__| |________| \_______/ |__| |______/ (_______/ +// +// This file is part of VirtualFluids. VirtualFluids is free software: you can +// redistribute it and/or modify it under the terms of the GNU General Public +// License as published by the Free Software Foundation, either version 3 of +// the License, or (at your option) any later version. +// +// VirtualFluids is distributed in the hope that it will be useful, but WITHOUT +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +// for more details. +// +// You should have received a copy of the GNU General Public License along +// with VirtualFluids (see COPYING.txt). If not, see <http://www.gnu.org/licenses/>. +// +//! \file NonReflectingInflowBCAlgorithm.h +//! \ingroup BoundarConditions +//! \author Hussein Alihussein +//======================================================================================= +#ifndef NonReflectingInflowBCAlgorithm_h__ +#define NonReflectingInflowBCAlgorithm_h__ + +#include "BCAlgorithm.h" +#include <PointerDefinitions.h> + +class DistributionArray3D; + +class NonReflectingInflowBCAlgorithm : public BCAlgorithm +{ +public: + NonReflectingInflowBCAlgorithm(); + ~NonReflectingInflowBCAlgorithm() override; + SPtr<BCAlgorithm> clone() override; + void addDistributions(SPtr<DistributionArray3D> distributions) override; + void applyBC() override; +}; +#endif // NonReflectingDensityBCAlgorithm_h__ diff --git a/src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingOutflowBCAlgorithmWithRelaxation.cpp b/src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingOutflowBCAlgorithmWithRelaxation.cpp new file mode 100644 index 000000000..ce2c5a626 --- /dev/null +++ b/src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingOutflowBCAlgorithmWithRelaxation.cpp @@ -0,0 +1,233 @@ +//======================================================================================= +// ____ ____ __ ______ __________ __ __ __ __ +// \ \ | | | | | _ \ |___ ___| | | | | / \ | | +// \ \ | | | | | |_) | | | | | | | / \ | | +// \ \ | | | | | _ / | | | | | | / /\ \ | | +// \ \ | | | | | | \ \ | | | \__/ | / ____ \ | |____ +// \ \ | | |__| |__| \__\ |__| \________/ /__/ \__\ |_______| +// \ \ | | ________________________________________________________________ +// \ \ | | | ______________________________________________________________| +// \ \| | | | __ __ __ __ ______ _______ +// \ | | |_____ | | | | | | | | | _ \ / _____) +// \ | | _____| | | | | | | | | | | \ \ \_______ +// \ | | | | |_____ | \_/ | | | | |_/ / _____ | +// \ _____| |__| |________| \_______/ |__| |______/ (_______/ +// +// This file is part of VirtualFluids. VirtualFluids is free software: you can +// redistribute it and/or modify it under the terms of the GNU General Public +// License as published by the Free Software Foundation, either version 3 of +// the License, or (at your option) any later version. +// +// VirtualFluids is distributed in the hope that it will be useful, but WITHOUT +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +// for more details. +// +// You should have received a copy of the GNU General Public License along +// with VirtualFluids (see COPYING.txt). If not, see <http://www.gnu.org/licenses/>. +// +//! \file NonReflectingOutflowBCAlgorithmWithRelaxation.cpp +//! \ingroup BoundarConditions +//! \author Konstantin Kutscher, Hussein Alihussein +//======================================================================================= +#include "NonReflectingOutflowBCAlgorithmWithRelaxation.h" + +#include "BoundaryConditions.h" +#include "D3Q27System.h" +#include "DistributionArray3D.h" + +NonReflectingOutflowBCAlgorithmWithRelaxation::NonReflectingOutflowBCAlgorithmWithRelaxation() +{ + BCAlgorithm::type = BCAlgorithm::NonReflectingOutflowBCAlgorithmWithRelaxation; + BCAlgorithm::preCollision = true; +} +////////////////////////////////////////////////////////////////////////// +NonReflectingOutflowBCAlgorithmWithRelaxation::~NonReflectingOutflowBCAlgorithmWithRelaxation() = default; +////////////////////////////////////////////////////////////////////////// +SPtr<BCAlgorithm> NonReflectingOutflowBCAlgorithmWithRelaxation::clone() +{ + SPtr<BCAlgorithm> bc(new NonReflectingOutflowBCAlgorithmWithRelaxation()); + return bc; +} +////////////////////////////////////////////////////////////////////////// +void NonReflectingOutflowBCAlgorithmWithRelaxation::addDistributions(SPtr<DistributionArray3D> distributions) +{ + this->distributions = distributions; +} +////////////////////////////////////////////////////////////////////////// +void NonReflectingOutflowBCAlgorithmWithRelaxation::applyBC() +{ + using namespace vf::lbm::dir; + + using namespace D3Q27System; + // using namespace UbMath; + using namespace vf::lbm::constant; + + LBMReal f[ENDF + 1]; + LBMReal ftemp[ENDF + 1]; + + int nx1 = x1; + int nx2 = x2; + int nx3 = x3; + int direction = -1; + + // flag points in direction of fluid + if (bcPtr->hasDensityBoundaryFlag(DIR_P00)) { + nx1 += 1; + direction = DIR_P00; + } else if (bcPtr->hasDensityBoundaryFlag(DIR_M00)) { + nx1 -= 1; + direction = DIR_M00; + } else if (bcPtr->hasDensityBoundaryFlag(DIR_0P0)) { + nx2 += 1; + direction = DIR_0P0; + } else if (bcPtr->hasDensityBoundaryFlag(DIR_0M0)) { + nx2 -= 1; + direction = DIR_0M0; + } else if (bcPtr->hasDensityBoundaryFlag(DIR_00P)) { + nx3 += 1; + direction = DIR_00P; + } else if (bcPtr->hasDensityBoundaryFlag(DIR_00M)) { + nx3 -= 1; + direction = DIR_00M; + } else + UB_THROW(UbException(UB_EXARGS, "Danger...no orthogonal BC-Flag on density boundary...")); + + distributions->getDistribution(f, x1, x2, x3); + distributions->getDistribution(ftemp, nx1, nx2, nx3); + + LBMReal rho, vx1, vx2, vx3; + calcMacrosFct(f, rho, vx1, vx2, vx3); + LBMReal delf = rho*0.01; + switch (direction) { + case DIR_P00: + f[DIR_P00] = ftemp[DIR_P00] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_P00] - delf* WEIGTH[DIR_P00]; + f[DIR_PP0] = ftemp[DIR_PP0] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PP0]- delf* WEIGTH[DIR_PP0]; + f[DIR_PM0] = ftemp[DIR_PM0] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PM0]- delf* WEIGTH[DIR_PM0]; + f[DIR_P0P] = ftemp[DIR_P0P] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_P0P]- delf* WEIGTH[DIR_P0P]; + f[DIR_P0M] = ftemp[DIR_P0M] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_P0M]- delf* WEIGTH[DIR_P0M]; + f[DIR_PPP] = ftemp[DIR_PPP] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PPP]- delf* WEIGTH[DIR_PPP]; + f[DIR_PMP] = ftemp[DIR_PMP] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PMP]- delf* WEIGTH[DIR_PMP]; + f[DIR_PPM] = ftemp[DIR_PPM] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PPM]- delf* WEIGTH[DIR_PPM]; + f[DIR_PMM] = ftemp[DIR_PMM] * (one_over_sqrt3 + vx1) + (1.0 - one_over_sqrt3 - vx1) * f[DIR_PMM]- delf* WEIGTH[DIR_PMM]; + + distributions->setDistributionInvForDirection(f[DIR_P00], x1 + DX1[DIR_M00], x2 + DX2[DIR_M00], x3 + DX3[DIR_M00], DIR_M00); + distributions->setDistributionInvForDirection(f[DIR_PP0], x1 + DX1[DIR_MM0], x2 + DX2[DIR_MM0], x3 + DX3[DIR_MM0], DIR_MM0); + distributions->setDistributionInvForDirection(f[DIR_PM0], x1 + DX1[DIR_MP0], x2 + DX2[DIR_MP0], x3 + DX3[DIR_MP0], DIR_MP0); + distributions->setDistributionInvForDirection(f[DIR_P0P], x1 + DX1[DIR_M0M], x2 + DX2[DIR_M0M], x3 + DX3[DIR_M0M], DIR_M0M); + distributions->setDistributionInvForDirection(f[DIR_P0M], x1 + DX1[DIR_M0P], x2 + DX2[DIR_M0P], x3 + DX3[DIR_M0P], DIR_M0P); + distributions->setDistributionInvForDirection(f[DIR_PPP], x1 + DX1[DIR_MMM], x2 + DX2[DIR_MMM], x3 + DX3[DIR_MMM], DIR_MMM); + distributions->setDistributionInvForDirection(f[DIR_PMP], x1 + DX1[DIR_MPM], x2 + DX2[DIR_MPM], x3 + DX3[DIR_MPM], DIR_MPM); + distributions->setDistributionInvForDirection(f[DIR_PPM], x1 + DX1[DIR_MMP], x2 + DX2[DIR_MMP], x3 + DX3[DIR_MMP], DIR_MMP); + distributions->setDistributionInvForDirection(f[DIR_PMM], x1 + DX1[DIR_MPP], x2 + DX2[DIR_MPP], x3 + DX3[DIR_MPP], DIR_MPP); + break; + case DIR_M00: + f[DIR_M00] = ftemp[DIR_M00] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_M00]- delf* WEIGTH[DIR_M00]; + f[DIR_MP0] = ftemp[DIR_MP0] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_MP0]- delf* WEIGTH[DIR_MP0]; + f[DIR_MM0] = ftemp[DIR_MM0] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_MM0]- delf* WEIGTH[DIR_MM0]; + f[DIR_M0P] = ftemp[DIR_M0P] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_M0P]- delf* WEIGTH[DIR_M0P]; + f[DIR_M0M] = ftemp[DIR_M0M] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_M0M]- delf* WEIGTH[DIR_M0M]; + f[DIR_MPP] = ftemp[DIR_MPP] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_MPP]- delf* WEIGTH[DIR_MPP]; + f[DIR_MMP] = ftemp[DIR_MMP] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_MMP]- delf* WEIGTH[DIR_MMP]; + f[DIR_MPM] = ftemp[DIR_MPM] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_MPM]- delf* WEIGTH[DIR_MPM]; + f[DIR_MMM] = ftemp[DIR_MMM] * (one_over_sqrt3 - vx1) + (1.0 - one_over_sqrt3 + vx1) * f[DIR_MMM]- delf* WEIGTH[DIR_MMM]; + + distributions->setDistributionInvForDirection(f[DIR_M00], x1 + DX1[DIR_P00], x2 + DX2[DIR_P00], x3 + DX3[DIR_P00], DIR_P00); + distributions->setDistributionInvForDirection(f[DIR_MP0], x1 + DX1[DIR_PM0], x2 + DX2[DIR_PM0], x3 + DX3[DIR_PM0], DIR_PM0); + distributions->setDistributionInvForDirection(f[DIR_MM0], x1 + DX1[DIR_PP0], x2 + DX2[DIR_PP0], x3 + DX3[DIR_PP0], DIR_PP0); + distributions->setDistributionInvForDirection(f[DIR_M0P], x1 + DX1[DIR_P0M], x2 + DX2[DIR_P0M], x3 + DX3[DIR_P0M], DIR_P0M); + distributions->setDistributionInvForDirection(f[DIR_M0M], x1 + DX1[DIR_P0P], x2 + DX2[DIR_P0P], x3 + DX3[DIR_P0P], DIR_P0P); + distributions->setDistributionInvForDirection(f[DIR_MPP], x1 + DX1[DIR_PMM], x2 + DX2[DIR_PMM], x3 + DX3[DIR_PMM], DIR_PMM); + distributions->setDistributionInvForDirection(f[DIR_MMP], x1 + DX1[DIR_PPM], x2 + DX2[DIR_PPM], x3 + DX3[DIR_PPM], DIR_PPM); + distributions->setDistributionInvForDirection(f[DIR_MPM], x1 + DX1[DIR_PMP], x2 + DX2[DIR_PMP], x3 + DX3[DIR_PMP], DIR_PMP); + distributions->setDistributionInvForDirection(f[DIR_MMM], x1 + DX1[DIR_PPP], x2 + DX2[DIR_PPP], x3 + DX3[DIR_PPP], DIR_PPP); + break; + case DIR_0P0: + f[DIR_0P0] = ftemp[DIR_0P0] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_0P0]- delf* WEIGTH[DIR_0P0]; + f[DIR_PP0] = ftemp[DIR_PP0] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_PP0]- delf* WEIGTH[DIR_PP0]; + f[DIR_MP0] = ftemp[DIR_MP0] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_MP0]- delf* WEIGTH[DIR_MP0]; + f[DIR_0PP] = ftemp[DIR_0PP] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_0PP]- delf* WEIGTH[DIR_0PP]; + f[DIR_0PM] = ftemp[DIR_0PM] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_0PM]- delf* WEIGTH[DIR_0PM]; + f[DIR_PPP] = ftemp[DIR_PPP] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_PPP]- delf* WEIGTH[DIR_PPP]; + f[DIR_MPP] = ftemp[DIR_MPP] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_MPP]- delf* WEIGTH[DIR_MPP]; + f[DIR_PPM] = ftemp[DIR_PPM] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_PPM]- delf* WEIGTH[DIR_PPM]; + f[DIR_MPM] = ftemp[DIR_MPM] * (one_over_sqrt3 + vx2) + (1.0 - one_over_sqrt3 - vx2) * f[DIR_MPM]- delf* WEIGTH[DIR_MPM]; + + distributions->setDistributionInvForDirection(f[DIR_0P0], x1 + DX1[DIR_0M0], x2 + DX2[DIR_0M0], x3 + DX3[DIR_0M0], DIR_0M0); + distributions->setDistributionInvForDirection(f[DIR_PP0], x1 + DX1[DIR_MM0], x2 + DX2[DIR_MM0], x3 + DX3[DIR_MM0], DIR_MM0); + distributions->setDistributionInvForDirection(f[DIR_MP0], x1 + DX1[DIR_PM0], x2 + DX2[DIR_PM0], x3 + DX3[DIR_PM0], DIR_PM0); + distributions->setDistributionInvForDirection(f[DIR_0PP], x1 + DX1[DIR_0MM], x2 + DX2[DIR_0MM], x3 + DX3[DIR_0MM], DIR_0MM); + distributions->setDistributionInvForDirection(f[DIR_0PM], x1 + DX1[DIR_0MP], x2 + DX2[DIR_0MP], x3 + DX3[DIR_0MP], DIR_0MP); + distributions->setDistributionInvForDirection(f[DIR_PPP], x1 + DX1[DIR_MMM], x2 + DX2[DIR_MMM], x3 + DX3[DIR_MMM], DIR_MMM); + distributions->setDistributionInvForDirection(f[DIR_MPP], x1 + DX1[DIR_PMM], x2 + DX2[DIR_PMM], x3 + DX3[DIR_PMM], DIR_PMM); + distributions->setDistributionInvForDirection(f[DIR_PPM], x1 + DX1[DIR_MMP], x2 + DX2[DIR_MMP], x3 + DX3[DIR_MMP], DIR_MMP); + distributions->setDistributionInvForDirection(f[DIR_MPM], x1 + DX1[DIR_PMP], x2 + DX2[DIR_PMP], x3 + DX3[DIR_PMP], DIR_PMP); + break; + case DIR_0M0: + f[DIR_0M0] = ftemp[DIR_0M0] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_0M0]- delf* WEIGTH[DIR_0M0]; + f[DIR_PM0] = ftemp[DIR_PM0] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_PM0]- delf* WEIGTH[DIR_PM0]; + f[DIR_MM0] = ftemp[DIR_MM0] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_MM0]- delf* WEIGTH[DIR_MM0]; + f[DIR_0MP] = ftemp[DIR_0MP] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_0MP]- delf* WEIGTH[DIR_0MP]; + f[DIR_0MM] = ftemp[DIR_0MM] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_0MM]- delf* WEIGTH[DIR_0MM]; + f[DIR_PMP] = ftemp[DIR_PMP] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_PMP]- delf* WEIGTH[DIR_PMP]; + f[DIR_MMP] = ftemp[DIR_MMP] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_MMP]- delf* WEIGTH[DIR_MMP]; + f[DIR_PMM] = ftemp[DIR_PMM] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_PMM]- delf* WEIGTH[DIR_PMM]; + f[DIR_MMM] = ftemp[DIR_MMM] * (one_over_sqrt3 - vx2) + (1.0 - one_over_sqrt3 + vx2) * f[DIR_MMM]- delf* WEIGTH[DIR_MMM]; + + distributions->setDistributionInvForDirection(f[DIR_0M0], x1 + DX1[DIR_0P0], x2 + DX2[DIR_0P0], x3 + DX3[DIR_0P0], DIR_0P0); + distributions->setDistributionInvForDirection(f[DIR_PM0], x1 + DX1[DIR_MP0], x2 + DX2[DIR_MP0], x3 + DX3[DIR_MP0], DIR_MP0); + distributions->setDistributionInvForDirection(f[DIR_MM0], x1 + DX1[DIR_PP0], x2 + DX2[DIR_PP0], x3 + DX3[DIR_PP0], DIR_PP0); + distributions->setDistributionInvForDirection(f[DIR_0MP], x1 + DX1[DIR_0PM], x2 + DX2[DIR_0PM], x3 + DX3[DIR_0PM], DIR_0PM); + distributions->setDistributionInvForDirection(f[DIR_0MM], x1 + DX1[DIR_0PP], x2 + DX2[DIR_0PP], x3 + DX3[DIR_0PP], DIR_0PP); + distributions->setDistributionInvForDirection(f[DIR_PMP], x1 + DX1[DIR_MPM], x2 + DX2[DIR_MPM], x3 + DX3[DIR_MPM], DIR_MPM); + distributions->setDistributionInvForDirection(f[DIR_MMP], x1 + DX1[DIR_PPM], x2 + DX2[DIR_PPM], x3 + DX3[DIR_PPM], DIR_PPM); + distributions->setDistributionInvForDirection(f[DIR_PMM], x1 + DX1[DIR_MPP], x2 + DX2[DIR_MPP], x3 + DX3[DIR_MPP], DIR_MPP); + distributions->setDistributionInvForDirection(f[DIR_MMM], x1 + DX1[DIR_PPP], x2 + DX2[DIR_PPP], x3 + DX3[DIR_PPP], DIR_PPP); + break; + case DIR_00P: + f[DIR_00P] = ftemp[DIR_00P] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_00P]- delf* WEIGTH[DIR_00P]; + f[DIR_P0P] = ftemp[DIR_P0P] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_P0P]- delf* WEIGTH[DIR_P0P]; + f[DIR_M0P] = ftemp[DIR_M0P] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_M0P]- delf* WEIGTH[DIR_M0P]; + f[DIR_0PP] = ftemp[DIR_0PP] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_0PP]- delf* WEIGTH[DIR_0PP]; + f[DIR_0MP] = ftemp[DIR_0MP] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_0MP]- delf* WEIGTH[DIR_0MP]; + f[DIR_PPP] = ftemp[DIR_PPP] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_PPP]- delf* WEIGTH[DIR_PPP]; + f[DIR_MPP] = ftemp[DIR_MPP] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_MPP]- delf* WEIGTH[DIR_MPP]; + f[DIR_PMP] = ftemp[DIR_PMP] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_PMP]- delf* WEIGTH[DIR_PMP]; + f[DIR_MMP] = ftemp[DIR_MMP] * (one_over_sqrt3 + vx3) + (1.0 - one_over_sqrt3 - vx3) * f[DIR_MMP]- delf* WEIGTH[DIR_MMP]; + + distributions->setDistributionInvForDirection(f[DIR_00P], x1 + DX1[DIR_00M], x2 + DX2[DIR_00M], x3 + DX3[DIR_00M], DIR_00M); + distributions->setDistributionInvForDirection(f[DIR_P0P], x1 + DX1[DIR_M0M], x2 + DX2[DIR_M0M], x3 + DX3[DIR_M0M], DIR_M0M); + distributions->setDistributionInvForDirection(f[DIR_M0P], x1 + DX1[DIR_P0M], x2 + DX2[DIR_P0M], x3 + DX3[DIR_P0M], DIR_P0M); + distributions->setDistributionInvForDirection(f[DIR_0PP], x1 + DX1[DIR_0MM], x2 + DX2[DIR_0MM], x3 + DX3[DIR_0MM], DIR_0MM); + distributions->setDistributionInvForDirection(f[DIR_0MP], x1 + DX1[DIR_0PM], x2 + DX2[DIR_0PM], x3 + DX3[DIR_0PM], DIR_0PM); + distributions->setDistributionInvForDirection(f[DIR_PPP], x1 + DX1[DIR_MMM], x2 + DX2[DIR_MMM], x3 + DX3[DIR_MMM], DIR_MMM); + distributions->setDistributionInvForDirection(f[DIR_MPP], x1 + DX1[DIR_PMM], x2 + DX2[DIR_PMM], x3 + DX3[DIR_PMM], DIR_PMM); + distributions->setDistributionInvForDirection(f[DIR_PMP], x1 + DX1[DIR_MPM], x2 + DX2[DIR_MPM], x3 + DX3[DIR_MPM], DIR_MPM); + distributions->setDistributionInvForDirection(f[DIR_MMP], x1 + DX1[DIR_PPM], x2 + DX2[DIR_PPM], x3 + DX3[DIR_PPM], DIR_PPM); + break; + case DIR_00M: + f[DIR_00M] = ftemp[DIR_00M] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_00M]- delf* WEIGTH[DIR_00M]; + f[DIR_P0M] = ftemp[DIR_P0M] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_P0M]- delf* WEIGTH[DIR_P0M]; + f[DIR_M0M] = ftemp[DIR_M0M] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_M0M]- delf* WEIGTH[DIR_M0M]; + f[DIR_0PM] = ftemp[DIR_0PM] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_0PM]- delf* WEIGTH[DIR_0PM]; + f[DIR_0MM] = ftemp[DIR_0MM] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_0MM]- delf* WEIGTH[DIR_0MM]; + f[DIR_PPM] = ftemp[DIR_PPM] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_PPM]- delf* WEIGTH[DIR_PPM]; + f[DIR_MPM] = ftemp[DIR_MPM] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_MPM]- delf* WEIGTH[DIR_MPM]; + f[DIR_PMM] = ftemp[DIR_PMM] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_PMM]- delf* WEIGTH[DIR_PMM]; + f[DIR_MMM] = ftemp[DIR_MMM] * (one_over_sqrt3 - vx3) + (1.0 - one_over_sqrt3 + vx3) * f[DIR_MMM]- delf* WEIGTH[DIR_MMM]; + + distributions->setDistributionInvForDirection(f[DIR_00M], x1 + DX1[DIR_00P], x2 + DX2[DIR_00P], x3 + DX3[DIR_00P], DIR_00P); + distributions->setDistributionInvForDirection(f[DIR_P0M], x1 + DX1[DIR_M0P], x2 + DX2[DIR_M0P], x3 + DX3[DIR_M0P], DIR_M0P); + distributions->setDistributionInvForDirection(f[DIR_M0M], x1 + DX1[DIR_P0P], x2 + DX2[DIR_P0P], x3 + DX3[DIR_P0P], DIR_P0P); + distributions->setDistributionInvForDirection(f[DIR_0PM], x1 + DX1[DIR_0MP], x2 + DX2[DIR_0MP], x3 + DX3[DIR_0MP], DIR_0MP); + distributions->setDistributionInvForDirection(f[DIR_0MM], x1 + DX1[DIR_0PP], x2 + DX2[DIR_0PP], x3 + DX3[DIR_0PP], DIR_0PP); + distributions->setDistributionInvForDirection(f[DIR_PPM], x1 + DX1[DIR_MMP], x2 + DX2[DIR_MMP], x3 + DX3[DIR_MMP], DIR_MMP); + distributions->setDistributionInvForDirection(f[DIR_MPM], x1 + DX1[DIR_PMP], x2 + DX2[DIR_PMP], x3 + DX3[DIR_PMP], DIR_PMP); + distributions->setDistributionInvForDirection(f[DIR_PMM], x1 + DX1[DIR_MPP], x2 + DX2[DIR_MPP], x3 + DX3[DIR_MPP], DIR_MPP); + distributions->setDistributionInvForDirection(f[DIR_MMM], x1 + DX1[DIR_PPP], x2 + DX2[DIR_PPP], x3 + DX3[DIR_PPP], DIR_PPP); + break; + default: + UB_THROW( + UbException(UB_EXARGS, "It isn't implemented non reflecting density boundary for this direction!")); + } +} diff --git a/src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingOutflowBCAlgorithmWithRelaxation.h b/src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingOutflowBCAlgorithmWithRelaxation.h new file mode 100644 index 000000000..97badb60d --- /dev/null +++ b/src/cpu/VirtualFluidsCore/BoundaryConditions/NonReflectingOutflowBCAlgorithmWithRelaxation.h @@ -0,0 +1,50 @@ +//======================================================================================= +// ____ ____ __ ______ __________ __ __ __ __ +// \ \ | | | | | _ \ |___ ___| | | | | / \ | | +// \ \ | | | | | |_) | | | | | | | / \ | | +// \ \ | | | | | _ / | | | | | | / /\ \ | | +// \ \ | | | | | | \ \ | | | \__/ | / ____ \ | |____ +// \ \ | | |__| |__| \__\ |__| \________/ /__/ \__\ |_______| +// \ \ | | ________________________________________________________________ +// \ \ | | | ______________________________________________________________| +// \ \| | | | __ __ __ __ ______ _______ +// \ | | |_____ | | | | | | | | | _ \ / _____) +// \ | | _____| | | | | | | | | | | \ \ \_______ +// \ | | | | |_____ | \_/ | | | | |_/ / _____ | +// \ _____| |__| |________| \_______/ |__| |______/ (_______/ +// +// This file is part of VirtualFluids. VirtualFluids is free software: you can +// redistribute it and/or modify it under the terms of the GNU General Public +// License as published by the Free Software Foundation, either version 3 of +// the License, or (at your option) any later version. +// +// VirtualFluids is distributed in the hope that it will be useful, but WITHOUT +// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +// for more details. +// +// You should have received a copy of the GNU General Public License along +// with VirtualFluids (see COPYING.txt). If not, see <http://www.gnu.org/licenses/>. +// +//! \file NonReflectingOutflowBCAlgorithmWithRelaxation.h +//! \ingroup BoundarConditions +//! \author Konstantin Kutscher, Hussein Alihussein +//======================================================================================= +#ifndef NonReflectingOutflowBCAlgorithmWithRelaxation_h__ +#define NonReflectingOutflowBCAlgorithmWithRelaxation_h__ + +#include "BCAlgorithm.h" +#include <PointerDefinitions.h> + +class DistributionArray3D; + +class NonReflectingOutflowBCAlgorithmWithRelaxation : public BCAlgorithm +{ +public: + NonReflectingOutflowBCAlgorithmWithRelaxation(); + ~NonReflectingOutflowBCAlgorithmWithRelaxation() override; + SPtr<BCAlgorithm> clone() override; + void addDistributions(SPtr<DistributionArray3D> distributions) override; + void applyBC() override; +}; +#endif // NonReflectingDensityBCAlgorithm_h__ -- GitLab